ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the study of lower and upper bounds for the number of vertices of the polytope of $ntimes ntimes n$ stochastic tensors (i.e., triply stochastic arrays of dimension $n$). By using known results on polytopes (i.e., the Upper and Lower Bound Theorems), we present some new lower and upper bounds. We show that the new upper bound is tighter than the one recently obtained by Chang, Paksoy and Zhang [Ann. Funct. Anal. 7 (2016), no.~3, 386--393] and also sharper than the one in Linial and Lurias [Discrete Comput. Geom. 51 (2014), no.~1, 161--170]. We demonstrate that the analog of the lower bound obtained in such a way, however, is no better than the existing ones.
Given an integer $1leq j <n$, define the $(j)$-coloring of a $n$-dimensional hypercube $H_{n}$ to be the $2$-coloring of the edges of $H_{n}$ in which all edges in dimension $i$, $1leq i leq j$, have color $1$ and all other edges have color $2$. Chen
The secondary polytope of a point configuration A is a polytope whose face poset is isomorphic to the poset of all regular subdivisions of A. While the vertices of the secondary polytope - corresponding to the triangulations of A - are very well stud
Hakimi and Schmeichel determined a sharp lower bound for the number of cycles of length 4 in a maximal planar graph with $n$ vertices, $ngeq 5$. It has been shown that the bound is sharp for $n = 5,12$ and $ngeq 14$ vertices. However, it was only con
A basic combinatorial invariant of a convex polytope $P$ is its $f$-vector $f(P)=(f_0,f_1,dots,f_{dim P-1})$, where $f_i$ is the number of $i$-dimensional faces of $P$. Steinitz characterized all possible $f$-vectors of $3$-polytopes and Grunbaum cha
Let m,n be positive integers. Define T(m,n) to be the transportation polytope consisting of the m x n non-negative real matrices whose rows each sum to 1 and whose columns each sum to m/n. The special case B(n)=T(n,n) is the much-studied Birkhoff-von