ﻻ يوجد ملخص باللغة العربية
We present a thorough study of the theoretical properties and devise efficient algorithms for the emph{persistent Laplacian}, an extension of the standard combinatorial Laplacian to the setting of pairs (or, in more generality, sequences) of simplicial complexes $K hookrightarrow L$, which was recently introduced by Wang, Nguyen, and Wei. In particular, in analogy with the non-persistent case, we first prove that the nullity of the $q$-th persistent Laplacian $Delta_q^{K,L}$ equals the $q$-th persistent Betti number of the inclusion $(K hookrightarrow L)$. We then present an initial algorithm for finding a matrix representation of $Delta_q^{K,L}$, which itself helps interpret the persistent Laplacian. We exhibit a novel relationship between the persistent Laplacian and the notion of Schur complement of a matrix which has several important implications. In the graph case, it both uncovers a link with the notion of effective resistance and leads to a persistent version of the Cheeger inequality. This relationship also yields an additional, very simple algorithm for finding (a matrix representation of) the $q$-th persistent Laplacian which in turn leads to a novel and fundamentally different algorithm for computing the $q$-th persistent Betti number for a pair $(K,L)$ which can be significantly more efficient than standard algorithms. Finally, we study persistent Laplacians for simplicial filtrations and present novel stability results for their eigenvalues. Our work brings methods from spectral graph theory, circuit theory, and persistent homology together with a topological view of the combinatorial Laplacian on simplicial complexes.
Given a set of points in the Euclidean plane, the Euclidean textit{$delta$-minimum spanning tree} ($delta$-MST) problem is the problem of finding a spanning tree with maximum degree no more than $delta$ for the set of points such the sum of the total
Persistent Topology studies topological features of shapes by analyzing the lower level sets of suitable functions, called filtering functions, and encoding the arising information in a parameterized version of the Betti numbers, i.e. the ranks of pe
We propose an algebraic framework for generalized graph Laplacians which unifies the study of resistor networks, the critical group, and the eigenvalues of the Laplacian and adjacency matrices. Given a graph with boundary $G$ together with a generali
In this paper we study a new metric for comparing Betti numbers functions in bidimensional persistent homology, based on coherent matchings, i.e. families of matchings that vary in a continuous way. We prove some new results about this metric, includ
Cohomological ideas have recently been injected into persistent homology and have been utilized for both enriching and accelerating the calculation of persistence diagrams. For instance, the software Ripser fundamentally exploits the computational ad