ﻻ يوجد ملخص باللغة العربية
We propose an algebraic framework for generalized graph Laplacians which unifies the study of resistor networks, the critical group, and the eigenvalues of the Laplacian and adjacency matrices. Given a graph with boundary $G$ together with a generalized Laplacian $L$ with entries in a commutative ring $R$, we define a generalized critical group $Upsilon_R(G,L)$. We relate $Upsilon_R(G,L)$ to spaces of harmonic functions on the network using the Hom, Tor, and Ext functors of homological algebra. We study how these algebraic objects transform under combinatorial operations on the network $(G,L)$, including harmonic morphisms, layer-stripping, duality, and symmetry. In particular, we use layer-stripping operations from the theory of resistor networks to systematize discrete harmonic continuation. This leads to an algebraic characterization of the graphs with boundary that can be completely layer-stripped, an algorithm for simplifying computation of $Upsilon_R(G,L)$, and upper bounds for the number of invariant factors in the critical group and the multiplicity of Laplacian eigenvalues in terms of geometric quantities.
We develop some aspects of the homological algebra of persistence modules, in both the one-parameter and multi-parameter settings, considered as either sheaves or graded modules. The two theories are different. We consider the graded module and sheaf
Many hard combinatorial problems can be modeled by a system of polynomial equations. N. Alon coined the term polynomial method to describe the use of nonlinear polynomials when solving combinatorial problems. We continue the exploration of the polyno
The family of contractible graphs, introduced by A. Ivashchenko, consists of the collection $mathfrak{I}$ of graphs constructed recursively from $K_1$ by contractible transformations. In this paper we show that every graph in a subfamily of $mathfrak
We present a thorough study of the theoretical properties and devise efficient algorithms for the emph{persistent Laplacian}, an extension of the standard combinatorial Laplacian to the setting of pairs (or, in more generality, sequences) of simplici
We relate finite generation of cones, monoids, and ideals in increasing chains (the local situation) to equivariant finite generation of the corresponding limit objects (the global situation). For cones and monoids there is no analogue of Noetheriani