ﻻ يوجد ملخص باللغة العربية
We construct stationary solutions to the Einstein-Maxwell-current system by using the Sasakian manifold for the three-dimensional space. Both the magnetic field and the electric current in the solution are specified by the contact form of the Sasakian manifold. The solutions contain an arbitrary function that describes inhomogeneity of the number density of the charged particles, and the function determines the curvature of the space.
The Einstein-Maxwell (E-M) equations in a curved spacetime that admits at least one Killing vector are derived, from a Lagrangian density adapted to symmetries. In this context, an auxiliary space of potentials is introduced, in which, the set of pot
We obtain the Einstein-Maxwell equations for (2+1)-dimensional static space-time, which are invariant under the transformation $q_0=i,q_2,q_2=i,q_0,alpha rightleftharpoons gamma$. It is shown that the magnetic solution obtained with the help of the p
We present several new exact solutions in five and higher dimensional Einstein-Maxwell theory by embedding the Nutku instanton. The metric functions for the five-dimensional solutions depend only on a radial coordinate and on two spatial coordinates
We present a general solution of the coupled Einstein-Maxwell field equations (without the source charges and currents) in three spacetime dimensions. We also admit any value of the cosmological constant. The whole family of such $Lambda$-electrovacu
The integral equations involved in Alekseevs monodromy transform technique are shown to be simple combinations of Sibgatullins integral equations and normalizing conditions. An additional complex conjugation introduced by Alekseev in the integrands m