ﻻ يوجد ملخص باللغة العربية
The integral equations involved in Alekseevs monodromy transform technique are shown to be simple combinations of Sibgatullins integral equations and normalizing conditions. An additional complex conjugation introduced by Alekseev in the integrands makes his scheme mathematically inconsistent; besides, in the electrovac case all Alekseevs principal value integrals contain an intrinsic error which has never been identified before. We also explain how operates a non-trivial double-step algorithm devised by Alekseev for rewriting, by purely algebraic manipulations and in a different (more complicated) parameter set, any particular specialization of the known analytically extended N-soliton electrovac solution obtained in 1995 with the aid of Sibgatullins method.
The Einstein-Maxwell (E-M) equations in a curved spacetime that admits at least one Killing vector are derived, from a Lagrangian density adapted to symmetries. In this context, an auxiliary space of potentials is introduced, in which, the set of pot
We present several new exact solutions in five and higher dimensional Einstein-Maxwell theory by embedding the Nutku instanton. The metric functions for the five-dimensional solutions depend only on a radial coordinate and on two spatial coordinates
Exact solutions to the Einstein field equations may be generated from already existing ones (seed solutions), that admit at least one Killing vector. In this framework, a space of potentials is introduced. By the use of symmetries in this space, the
We construct stationary solutions to the Einstein-Maxwell-current system by using the Sasakian manifold for the three-dimensional space. Both the magnetic field and the electric current in the solution are specified by the contact form of the Sasakia
Exact solutions of the Wheeler-DeWitt equation of the full theory of four dimensional gravity of Lorentzian signature are obtained. They are characterized by Schrodinger wavefunctionals having support on 3-metrics of constant spatial scalar curvature