ترغب بنشر مسار تعليمي؟ اضغط هنا

NPF update: Light-weight mirror development in Chile

109   0   0.0 ( 0 )
 نشر من قبل Amelia Bayo M
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Planet Formation research is blooming in an era where we are moving from speaking about protoplanetary disks to planet forming disks (Andrews et al., 2018). However, this transition is still motivated by indirect (but convincing) hints. Up to date, the direct detection of planets in the making remains elusive with the remarkable exception of PDS70b and c (Haffert et al., 2019; Keppler et al., 2018; Muller et al., 2018). The scarcity of detections is attributable to technical challenges, and even for the rare jewels that we can detect, characterization (resolving their hill spheres) is unachievable. The next step in this direction demands from near to mid-infrared interferometry to jump from $sim$100 m baselines to $sim$1 km, and from very few telescopes (two to six) to 20 or more (PFI like concepts, Monnier et al. 2018). This transition needs for more affordable near to mid-infrared telescopes to be designed. Since the driving cost for such telescopes resides on the primary mirror, in particular scaling with its diameter and weight, our approach to tackle this problem relies on the production of low-cost light mirrors.



قيم البحث

اقرأ أيضاً

86 - N. Soto , C. Lobos , P. Mardones 2020
The surface quality of replicated CFRP mirrors is ideally expected to be as good as the mandrel from which they are manufactured. In practice, a number of factors produce surface imperfections in the final mirrors at different scales. To understand w here this errors come from, and develop improvements to the manufacturing process accordingly, a wide range of metrology techniques and quality control methods must be adopted. Mechanical and optical instruments are employed to characterise glass mandrels and CFRP replicas at different spatial frequency ranges. Modal analysis is used to identify large scale aberrations, complemented with a spectral analysis at medium and small scales. It is seen that astigmatism is the dominant aberration in the CFRP replicas. On the medium and small scales, we have observed that fiber print-through and surface roughness can be improved significantly by an extra resin layer over the replicas surface, but still some residual irregularities are present.
Data from the Transiting Exoplanet Survey Satellite (TESS) has produced of order one million light curves at cadences of 120 s and especially 1800 s for every ~27-day observing sector during its two-year nominal mission. These data constitute a treas ure trove for the study of stellar variability and exoplanets. However, to fully utilize the data in such studies a proper removal of systematic noise sources must be performed before any analysis. The TESS Data for Asteroseismology (TDA) group is tasked with providing analysis-ready data for the TESS Asteroseismic Science Consortium, which covers the full spectrum of stellar variability types, including stellar oscillations and pulsations, spanning a wide range of variability timescales and amplitudes. We present here the two current implementations for co-trending of raw photometric light curves from TESS, which cover different regimes of variability to serve the entire seismic community. We find performance in terms of commonly used noise statistics to meet expectations and to be applicable to a wide range of different intrinsic variability types. Further, we find that the correction of light curves from a full sector of data can be completed well within a few days, meaning that when running in steady-state our routines are able to process one sector before data from the next arrives. Our pipeline is open-source and all processed data will be made available on TASOC and MAST.
Observing sites at the East-Antarctic plateau are considered to provide exceptional conditions for astronomy. The aim of this work is to assess its potential for detecting transiting extrasolar planets through a comparison and combination of photomet ric data from Antarctica with time series from a midlatitude site. During 2010, the two small aperture telescopes ASTEP 400 (Dome C) and BEST II (Chile) together performed an observing campaign of two target fields and the transiting planet WASP-18b. For the latter, a bright star, Dome C appears to yield an advantageous signal-to-noise ratio. For field surveys, both Dome C and Chile appear to be of comparable photometric quality. However, within two weeks, observations at Dome C yield a transit detection efficiency that typically requires a whole observing season in Chile. For the first time, data from Antarctica and Chile have been combined to extent the observational duty cycle. This approach is both feasible in practice and favorable for transit search, as it increases the detection yield by 12-18%.
This paper describes the new QuickFind method in LcTools for finding signals and associated TTVs (Transit Timing Variations) in light curves from NASA space missions. QuickFind is adept at finding medium to large sized signals (generally those with S /N ratios above 15) extremely fast, significantly reducing overall processing time for a light curve as compared to the BLS detection method. For example, on the lead authors computer, QuickFind was able to detect both KOI signals for star 10937029 in a 14 quarter Kepler light curve spanning 1,459 days in roughly 2 seconds whereas BLS took about 155 seconds to find both signals making QuickFind in this example about 77 times faster than BLS. This paper focuses on the user interfaces, data processing algorithm, and performance tests for the QuickFind method in LcTools.
ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to ot her scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard FITS files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System (WCS) aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا