ترغب بنشر مسار تعليمي؟ اضغط هنا

Reentrant superconductivity in proximity to a topological insulator

151   0   0.0 ( 0 )
 نشر من قبل Tairzhan Karabassov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the following paper we investigate the critical temperature $T_c$ behavior in the two-dimensional S/TI (S denotes superconductor and TI - topological insulator) junction with a proximity induced in-plane helical magnetization in the TI surface. The calculations of $T_c$ are performed using the general self-consistent approach based on the Usadel equations in Matsubara Greens functions technique. We show that the presence of the helical magnetization leads to the nonmonotonic behavior of the critical temperature as a function of the topological insulator layer thickness.



قيم البحث

اقرأ أيضاً

Superconducting topological crystalline insulators (TCI) are predicted to host new topological phases protected by crystalline symmetries, but available materials are insufficiently suitable for surface studies. To induce superconductivity at the sur face of a prototypical TCI SnTe, we use molecular beam epitaxy to grow a heterostructure of SnTe and a high-Tc superconductor Fe(Te,Se), utilizing a buffer layer to bridge the large lattice mismatch between SnTe and Fe(Te,Se). Using low-temperature scanning tunneling microscopy and spectroscopy, we measure a prominent spectral gap on the surface of SnTe, and demonstrate its superconducting origin by its dependence on temperature and magnetic field. Our work provides a new platform for atomic-scale investigations of emergent topological phenomena in superconducting TCIs.
At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an $s$-wave SC in a TI can develop an order parameter with a $p$-wave component. Here we present experimental evidence for an unexpected proximity-induced novel superconducting state in a thin layer of the prototypical TI, Bi$_2$Se$_3$, proximity coupled to Nb. From depth-resolved magnetic field measurements below the superconducting transition temperature of Nb, we observe a local enhancement of the magnetic field in Bi$_2$Se$_3$ that exceeds the externally applied field, thus supporting the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state. Our experimental results are complemented by theoretical calculations supporting the appearance of such a component at the interface which extends into the TI. This state is topologically distinct from the conventional Bardeen-Cooper-Schrieffer state it originates from. To the best of our knowledge, these findings present a first observation of bulk odd-frequency superconductivity in a TI. We thus reaffirm the potential of the TI-SC interface as a versatile platform to produce novel superconducting states.
193 - Fan Yang , Fanming Qu , Jie Shen 2012
We have studied the electron transport properties of topological insulator-related material Bi2Se3 near the superconducting Pb-Bi2Se3 interface, and found that a superconducting state is induced over an extended volume in Bi2Se3. This state can carry a Josephson supercurrent, and demonstrates a gap-like structure in the conductance spectra as probed by a normal-metal electrode. The establishment of the gap is not by confining the electrons into a narrow space close to the superconductor-normal metal interface, as previously observed in other systems, but presumably via electron-electron attractive interaction in Bi2Se3.
Using a prototype model for proximity induced superconductivity on a bilayer square lattice, we show that interlayer tunneling can drive change in topology of the Bogoliubov quasiparticle bands. Starting with topologically trivial superconductors, tr ansitions to a non-trivial $p_x + {rm i} p_y$ state and back to another trivial state are discovered. We characterize these phases in terms of edge-state spectra and Chern indices. We show that these transitions can also be controlled by experimentally viable control parameters, the bandwidth of the metallic layer and the gate potential. Insights from our results on a simple model for proximity induced superconductivity may open up a new route to discover topological superconductors.
We study the proximity effect between the fully-gapped region of a topological insulator in direct contact with an s-wave superconducting electrode (STI) and the surrounding topological insulator flake (TI) in Au/Bi$_{1.5}$Sb$_{0.5}$Te$_{1.7}$Se$_{1. 3}$/Nb devices. The conductance spectra of the devices show the presence of a large induced gap in the STI as well as the induction of superconducting correlations in the normal part of the TI on the order of the Thouless energy. The shape of the conductance modulation around zero-energy varies between devices and can be explained by existing theory of s-wave-induced superconductivity in SNN (S is a superconductor, N a superconducting proximized material and N is a normal metal) devices. All the conductance spectra show a conductance dip at the induced gap of the STI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا