ﻻ يوجد ملخص باللغة العربية
We have studied the electron transport properties of topological insulator-related material Bi2Se3 near the superconducting Pb-Bi2Se3 interface, and found that a superconducting state is induced over an extended volume in Bi2Se3. This state can carry a Josephson supercurrent, and demonstrates a gap-like structure in the conductance spectra as probed by a normal-metal electrode. The establishment of the gap is not by confining the electrons into a narrow space close to the superconductor-normal metal interface, as previously observed in other systems, but presumably via electron-electron attractive interaction in Bi2Se3.
Superconducting topological crystalline insulators (TCI) are predicted to host new topological phases protected by crystalline symmetries, but available materials are insufficiently suitable for surface studies. To induce superconductivity at the sur
Three-dimensional topological insulators (TIs) attract much attention due to its topologically protected Dirac surface states. Doping into TIs or their proximity with normal superconductors can promote the realization of topological superconductivity
At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an $s$-wave SC in
We study the proximity effect between the fully-gapped region of a topological insulator in direct contact with an s-wave superconducting electrode (STI) and the surrounding topological insulator flake (TI) in Au/Bi$_{1.5}$Sb$_{0.5}$Te$_{1.7}$Se$_{1.
The combination of superconductivity and the helical spin-momentum locking at the surface state of a topological insulator (TI) has been predicted to give rise to p-wave superconductivity and Majorana bound states. The superconductivity can be induce