ﻻ يوجد ملخص باللغة العربية
Fast reverse shocks (FRSs) cause the magnetosphere to expand, by contrast to the well-known compressions caused by the impact of fast forward shocks (FFS). Usually, FFSs are more geoeffective than FRSs, and consequently, the inner magnetosphere dynamic responses to both shock types can be quite different. In this study, we investigate for the first time the radiation belt response to an FRS impact using multi-satellite observations and numerical simulations. Spacecraft on the dayside observed decreases in magnetic field strength and energetic (~ 40-475 keV) particle fluxes. Timing analysis shows that the magnetic field signature propagated from the dayside to the nightside magnetosphere. Particles with different energies vary simultaneously at each spacecraft, implying a non-dispersive particle response to the shock. Spacecraft located at lower L-shells did not record any significant signatures. The observations indicate a local time dependence of the response associated with the shock inclination, with the clearest signatures being observed in the dusk-midnight sector. Simulations underestimate the amplitude of the magnetic field variations observed on the nightside. The observed decreases in the electron intensities result from a combination of radial gradient and adiabatic effects. The radial gradients in the spectral index appear to be the dominant contributor to the observed variations of electrons seen on the dayside (near noon and dusk) and on the nightside (near midnight). This study shows that even an FRS can affect the radiation belts significantly and provides an opportunity to understand their dynamic response to a sudden expansion of the magnetosphere.
Today, the near-Earth space is facing a paradigm change as the number of new spacecraft is literally sky-rocketing. Increasing numbers of small satellites threaten the sustainable use of space, as without removal, space debris will eventually make ce
Energetic particle fluxes in the outer magnetosphere present a significant challenge to modelling efforts as they can vary by orders of magnitude in response to solar wind driving conditions. In this article, we demonstrate the ability to propagate t
Energetic electrons inside Earths outer Van Allen belt pose a major radiation threat to space-borne electronics that often play vital roles in our modern society. Ultra-relativistic electrons with energies greater than or equal to two Megaelectron-vo
Real-time prediction of the dynamics of energetic electrons in Earths radiation belts incorporating incomplete observation data is important to protect valuable artificial satellites and to understand their physical processes. Traditionally, reduced
We present multi-wavelength observations of a typical long duration GRB 120326A at $z=1.798$, including rapid observations using a submillimeter array (SMA), and a comprehensive monitoring in X-ray and optical. The SMA observation provided the fastes