ﻻ يوجد ملخص باللغة العربية
Today, the near-Earth space is facing a paradigm change as the number of new spacecraft is literally sky-rocketing. Increasing numbers of small satellites threaten the sustainable use of space, as without removal, space debris will eventually make certain critical orbits unusable. A central factor affecting small spacecraft health and leading to debris is the radiation environment, which is unpredictable due to an incomplete understanding of the near-Earth radiation environment itself and its variability driven by the solar wind and outer magnetosphere. This paper presents the FORESAIL-1 nanosatellite mission, having two scientific and one technological objectives. The first scientific objective is to measure the energy and flux of energetic particle loss to the atmosphere with a representative energy and pitch angle resolution over a wide range of magnetic local times. To pave the way to novel model - in situ data comparisons, we also show preliminary results on precipitating electron fluxes obtained with the new global hybrid-Vlasov simulation Vlasiator. The second scientific objective of the FORESAIL-1 mission is to measure energetic neutral atoms (ENAs) of solar origin. The solar ENA flux has the potential to contribute importantly to the knowledge of solar eruption energy budget estimations. The technological objective is to demonstrate a satellite de-orbiting technology, and for the first time, make an orbit manoeuvre with a propellantless nanosatellite. FORESAIL-1 will demonstrate the potential for nanosatellites to make important scientific contributions as well as promote the sustainable utilisation of space by using a cost-efficient de-orbiting technology.
The Radiation Monitor (RADMON) on-board Aalto-1 CubeSat is an energetic particle detector that fulfills the requirements of small size, low power consumption and low budget. Aalto-1 was launched on 23 June 2017 to a sun-synchronous polar orbit with 9
Fast reverse shocks (FRSs) cause the magnetosphere to expand, by contrast to the well-known compressions caused by the impact of fast forward shocks (FFS). Usually, FFSs are more geoeffective than FRSs, and consequently, the inner magnetosphere dynam
The design, integration, testing, and launch of the first Finnish satellite Aalto-1 is briefly presented in this paper. Aalto-1, a three-unit CubeSat, launched into Sun-synchronous polar orbit at an altitude of approximately 500 km, is operational si
Energetic electrons inside Earths outer Van Allen belt pose a major radiation threat to space-borne electronics that often play vital roles in our modern society. Ultra-relativistic electrons with energies greater than or equal to two Megaelectron-vo
RADMON is a small radiation monitor designed and assembled by students of the University of Turku and the University of Helsinki. It is flown on-board Aalto-1, a 3-unit CubeSat in low Earth orbit at about 500 km altitude. The detector unit of the ins