ﻻ يوجد ملخص باللغة العربية
In liquid argon time projection chambers exposed to neutrino beams and running on or near surface levels, cosmic muons and other cosmic particles are incident on the detectors while a single neutrino-induced event is being recorded. In practice, this means that data from surface liquid argon time projection chambers will be dominated by cosmic particles, both as a source of event triggers and as the majority of the particle count in true neutrino-triggered events. In this work, we demonstrate a novel application of deep learning techniques to remove these background particles by applying semantic segmentation on full detector images from the SBND detector, the near detector in the Fermilab Short-Baseline Neutrino Program. We use this technique to identify, at single image-pixel level, whether recorded activity originated from cosmic particles or neutrino interactions.
Despite the tremendous success of Stochastic Gradient Descent (SGD) algorithm in deep learning, little is known about how SGD finds generalizable solutions in the high-dimensional weight space. By analyzing the learning dynamics and loss function lan
We present a simulation-based study using deep convolutional neural networks (DCNNs) to identify neutrino interaction vertices in the MINERvA passive targets region, and illustrate the application of domain adversarial neural networks (DANNs) in this
Next-generation cosmic microwave background (CMB) experiments will have lower noise and therefore increased sensitivity, enabling improved constraints on fundamental physics parameters such as the sum of neutrino masses and the tensor-to-scalar ratio
We analyze the connectivity structure of weighted brain networks extracted from spontaneous magnetoencephalographic (MEG) signals of healthy subjects and epileptic patients (suffering from absence seizures) recorded at rest. We find that, for the act
During a tokamak discharge, the plasma can vary between different confinement regimes: Low (L), High (H) and, in some cases, a temporary (intermediate state), called Dithering (D). In addition, while the plasma is in H mode, Edge Localized Modes (ELM