ﻻ يوجد ملخص باللغة العربية
We analyze the connectivity structure of weighted brain networks extracted from spontaneous magnetoencephalographic (MEG) signals of healthy subjects and epileptic patients (suffering from absence seizures) recorded at rest. We find that, for the activities in the 5-14 Hz range, healthy brains exhibit a sparse connectivity, whereas the brain networks of patients display a rich connectivity with clear modular structure. Our results suggest that modularity plays a key role in the functional organization of brain areas during normal and pathological neural activities at rest.
Modularity plays an important role in brain networks architecture and influences its dynamics and the ability to integrate and segregate different modules of cerebral regions. Alterations in community structure are associated with several clinical di
Life and language are discrete combinatorial systems (DCSs) in which the basic building blocks are finite sets of elementary units: nucleotides or codons in a DNA sequence and letters or words in a language. Different combinations of these finite uni
Background: Skin marker-based analysis of functional spinal movement is a promising method for quantifying longitudinal effects of treatment interventions in patients with spinal pathologies. However, observed day-to-day changes might not necessarily
In liquid argon time projection chambers exposed to neutrino beams and running on or near surface levels, cosmic muons and other cosmic particles are incident on the detectors while a single neutrino-induced event is being recorded. In practice, this
We analyze the complex networks associated with brain electrical activity. Multichannel EEG measurements are first processed to obtain 3D voxel activations using the tomographic algorithm LORETA. Then, the correlation of the current intensity activat