ﻻ يوجد ملخص باللغة العربية
In the present article, we investigate the effects of dormancy on an abstract population genetic level. We first provide a short review of seed bank models in population genetics, and the role of dormancy for the interplay of evolutionary forces in general, before we discuss two recent paradigmatic models, referring to spontaneous resp. simultaneous switching of individuals between the active and the dormant state. We show that both mechanisms give rise to non-trivial mathematical objects, namely the (continuous) seed bank diffusion and the seed bank diffusion with jumps, as well as their dual processes, the seed bank coalescent and the seed bank coalescent with simultaneous switching.
Consider a population evolving from year to year through three seasons: spring, summer and winter. Every spring starts with $N$ dormant individuals waking up independently of each other according to a given distribution. Once an individual is awake,
The aim of this paper is to tackle part of the program set by Diekmann et al. in their seminal paper Diekmann et al. (2001). We quote It remains to investigate whether, and in what sense, the nonlinear determin-istic model formulation is the limit of
Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity
For a beneficial allele which enters a large unstructured population and eventually goes to fixation, it is known that the time to fixation is approximately $2log(alpha)/alpha$ for a large selection coefficient $alpha$. For a population that is distr
We derive and apply a partial differential equation for the moment generating function of the Wright-Fisher model of population genetics.