ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic population growth in spatially heterogeneous environments

150   0   0.0 ( 0 )
 نشر من قبل Peter Ralph
 تاريخ النشر 2011
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity, and dispersal on population growth, we study the following model for population abundances in $n$ patches: the conditional law of $X_{t+dt}$ given $X_t=x$ is such that when $dt$ is small the conditional mean of $X_{t+dt}^i-X_t^i$ is approximately $[x^imu_i+sum_j(x^j D_{ji}-x^i D_{ij})]dt$, where $X_t^i$ and $mu_i$ are the abundance and per capita growth rate in the $i$-th patch respectivly, and $D_{ij}$ is the dispersal rate from the $i$-th to the $j$-th patch, and the conditional covariance of $X_{t+dt}^i-X_t^i$ and $X_{t+dt}^j-X_t^j$ is approximately $x^i x^j sigma_{ij}dt$. We show for such a spatially extended population that if $S_t=(X_t^1+...+X_t^n)$ is the total population abundance, then $Y_t=X_t/S_t$, the vector of patch proportions, converges in law to a random vector $Y_infty$ as $ttoinfty$, and the stochastic growth rate $lim_{ttoinfty}t^{-1}log S_t$ equals the space-time average per-capita growth rate $sum_imu_iE[Y_infty^i]$ experienced by the population minus half of the space-time average temporal variation $E[sum_{i,j}sigma_{ij}Y_infty^i Y_infty^j]$ experienced by the population. We derive analytic results for the law of $Y_infty$, find which choice of the dispersal mechanism $D$ produces an optimal stochastic growth rate for a freely dispersing population, and investigate the effect on the stochastic growth rate of constraints on dispersal rates. Our results provide fundamental insights into ideal free movement in the face of uncertainty, the persistence of coupled sink populations, the evolution of dispersal rates, and the single large or several small (SLOSS) debate in conservation biology.



قيم البحث

اقرأ أيضاً

232 - Philippe Carmona 2018
The aim of this paper is to tackle part of the program set by Diekmann et al. in their seminal paper Diekmann et al. (2001). We quote It remains to investigate whether, and in what sense, the nonlinear determin-istic model formulation is the limit of a stochastic model for initial population size tending to infinity We set a precise and general framework for a stochastic individual based model : it is a piecewise deterministic Markov process defined on the set of finite measures. We then establish a law of large numbers under conditions easy to verify. Finally we show how this applies to old and new examples.
63 - Emeric Bouin , Yuan Lou 2020
We consider a system of two competing populations in two-dimensional heterogeneous environments. The populations are assumed to move horizontally and vertically with different probabilities, but are otherwise identical. We regard these probabilities as dispersal strategies. We show that the evolutionarily stable strategies are to move in one direction only. Our results predict that it is more beneficial for the species to choose the direction with smaller variation in the resource distribution. This finding seems to be in agreement with the classical results of Hasting [15] and Dockery et al. [11] for the evolution of slow dispersal, i.e. random diffusion is selected against in spatially heterogeneous environments. These conclusions also suggest that broader dispersal strategies should be considered regarding the movement in heterogeneous habitats.
351 - Rick Durrett 2009
In this paper I will review twenty years of work on the question: When is there coexistence in stochastic spatial models? The answer, announced in Durrett and Levin [Theor. Pop. Biol. 46 (1994) 363--394], and that we explain in this paper is that thi s can be determined by examining the mean-field ODE. There are a number of rigorous results in support of this picture, but we will state nine challenging and important open problems, most of which date from the 1990s.
In this paper we study the diffusion of an SIS-type epidemics on a network under the presence of a random environment, that enters in the definition of the infection rates of the nodes. Accordingly, we model the infection rates in the form of indepen dent stochastic processes. To analyze the problem, we apply a mean field approximation, which allows to get a stochastic differential equations for the probability of infection in each node, and classical tools about stability, which require to find suitable Lyapunovs functions. Here, we find conditions which guarantee, respectively, extinction and stochastic persistence of the epidemics. We show that there exists two regions, given in terms of the coefficients of the model, one where the system goes to extinction almost surely, and the other where it is stochastic permanent. These two regions are, unfortunately, not adjacent, as there is a gap between them, whose extension depends on the specific level of noise. In this last region, we perform numerical analysis to suggest the true behavior of the solution.
Many studies on animal and human movement patterns report the existence of scaling laws and power-law distributions. Whereas a number of random walk models have been proposed to explain observations, in many situations individuals actually rely on me ntal maps to explore strongly heterogeneous environments. In this work we study a model of a deterministic walker, visiting sites randomly distributed on the plane and with varying weight or attractiveness. At each step, the walker minimizes a function that depends on the distance to the next unvisited target (cost) and on the weight of that target (gain). If the target weight distribution is a power-law, $p(k)sim k^{-beta}$, in some range of the exponent $beta$, the foraging medium induces movements that are similar to Levy flights and are characterized by non-trivial exponents. We explore variations of the choice rule in order to test the robustness of the model and argue that the addition of noise has a limited impact on the dynamics in strongly disordered media.
التعليقات (0)
لا يوجد تعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا