ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Weighted Matching with Heterogeneous Arrival and Departure Rates

57   0   0.0 ( 0 )
 نشر من قبل Brendan Lucier
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a dynamic non-bipartite matching problem. There is a fixed set of agent types, and agents of a given type arrive and depart according to type-specific Poisson processes. Agent departures are not announced in advance. The value of a match is determined by the types of the matched agents. We present an online algorithm that is (1/8)-competitive with respect to the value of the optimal-in-hindsight policy, for arbitrary weighted graphs. Our algorithm treats agents heterogeneously, interpolating between immediate and delayed matching in order to thicken the market while still matching valuable agents opportunistically.



قيم البحث

اقرأ أيضاً

Weighted voting games (WVG) are coalitional games in which an agents contribution to a coalition is given by his it weight, and a coalition wins if its total weight meets or exceeds a given quota. These games model decision-making in political bodies as well as collaboration and surplus division in multiagent domains. The computational complexity of various solution concepts for weighted voting games received a lot of attention in recent years. In particular, Elkind et al.(2007) studied the complexity of stability-related solution concepts in WVGs, namely, of the core, the least core, and the nucleolus. While they have completely characterized the algorithmic complexity of the core and the least core, for the nucleolus they have only provided an NP-hardness result. In this paper, we solve an open problem posed by Elkind et al. by showing that the nucleolus of WVGs, and, more generally, k-vector weighted voting games with fixed k, can be computed in pseudopolynomial time, i.e., there exists an algorithm that correctly computes the nucleolus and runs in time polynomial in the number of players and the maximum weight. In doing so, we propose a general framework for computing the nucleolus, which may be applicable to a wider of class of games.
Maximum weight matching is one of the most fundamental combinatorial optimization problems with a wide range of applications in data mining and bioinformatics. Developing distributed weighted matching algorithms is challenging due to the sequential n ature of efficient algorithms for this problem. In this paper, we develop a simple distributed algorithm for the problem on general graphs with approximation guarantee of $2+varepsilon$ that (nearly) matches that of the sequential greedy algorithm. A key advantage of this algorithm is that it can be easily implemented in only two rounds of computation in modern parallel computation frameworks such as MapReduce. We also demonstrate the efficiency of our algorithm in practice on various graphs (some with half a trillion edges) by achieving objective values always close to what is achievable in the centralized setting.
We study the allocative challenges that governmental and nonprofit organizations face when tasked with equitable and efficient rationing of a social good among agents whose needs (demands) realize sequentially and are possibly correlated. To better a chieve their dual aims of equity and efficiency in such contexts, social planners intend to maximize the minimum fill rate across agents, where each agents fill rate must be irrevocably decided upon its arrival. For an arbitrarily correlated sequence of demands, we establish upper bounds on both the expected minimum fill rate (ex-post fairness) and the minimum expected fill rate (ex-ante fairness) achievable by any policy. Our bounds are parameterized by the number of agents and the expected demand-to-supply ratio, and they shed light on the limits of attaining equity in dynamic rationing. Further, we show that for any set of parameters, a simple adaptive policy of projected proportional allocation achieves the best possible fairness guarantee, ex post as well as ex ante. Our policy is transparent and easy to implement; yet despite its simplicity, we demonstrate that this policy provides significant improvement over the class of non-adaptive target-fill-rate policies. We obtain the performance guarantees of (i) our proposed adaptive policy by inductively designing lower-bound functions on its corresponding value-to-go, and (ii) the optimal target-fill-rate policy by establishing an intriguing connection to a monopoly-pricing optimization problem. We complement our theoretical developments with a numerical study motivated by the rationing of COVID-19 medical supplies based on a projected-demand model used by the White House. In such a setting, our simple adaptive policy significantly outperforms its theoretical guarantee as well as the optimal target-fill-rate policy.
We study dynamic matching in an infinite-horizon stochastic market. While all agents are potentially compatible with each other, some are hard-to-match and others are easy-to-match. Agents prefer to be matched as soon as possible and matches are form ed either bilaterally or indirectly through chains. We adopt an asymptotic approach and compute tight bounds on the limit of waiting time of agents under myopic policies that differ in matching technology and prioritization. We find that the market composition is a key factor in the desired matching technology and prioritization level. When hard-to-match agents arrive less frequently than easy-to-match ones (i) bilateral matching is almost as efficient as chains (waiting times scale similarly under both, though chains always outperform bilateral matching by a constant factor), and (ii) assigning priorities to hard-to-match agents improves their waiting times. When hard-to-match agents arrive more frequently, chains are much more efficient than bilateral matching and prioritization has no impact. We further conduct comparative statics on arrival rates. Somewhat surprisingly, we find that in a heterogeneous market and under bilateral matching, increasing arrival rate has a non-monotone effect on waiting times, due to the fact that, under some market compositions, there is an adverse effect of competition. Our comparative statics shed light on the impact of merging markets and attracting altruistic agents (that initiate chains) or easy-to-match agents. This work uncovers fundamental differences between heterogeneous and homogeneous dynamic markets, and potentially helps policy makers to generate insights on the operations of matching markets such as kidney exchange programs.
87 - Marcus Kaiser 2020
We consider dynamic equilibria for flows over time under the fluid queuing model. In this model, queues on the links of a network take care of flow propagation. Flow enters the network at a single source and leaves at a single sink. In a dynamic equi librium, every infinitesimally small flow particle reaches the sink as early as possible given the pattern of the rest of the flow. While this model has been examined for many decades, progress has been relatively recent. In particular, the derivatives of dynamic equilibria have been characterized as thin flows with resetting, which allowed for more structural results. Our two main results are based on the formulation of thin flows with resetting as linear complementarity problem and its analysis. We present a constructive proof of existence for dynamic equilibria if the inflow rate is right-monotone. The complexity of computing thin flows with resetting, which occurs as a subproblem in this method, is still open. We settle it for the class of two-terminal series-parallel networks by giving a recursive algorithm that solves the problem for all flow values simultaneously in polynomial time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا