ﻻ يوجد ملخص باللغة العربية
We consider dynamic equilibria for flows over time under the fluid queuing model. In this model, queues on the links of a network take care of flow propagation. Flow enters the network at a single source and leaves at a single sink. In a dynamic equilibrium, every infinitesimally small flow particle reaches the sink as early as possible given the pattern of the rest of the flow. While this model has been examined for many decades, progress has been relatively recent. In particular, the derivatives of dynamic equilibria have been characterized as thin flows with resetting, which allowed for more structural results. Our two main results are based on the formulation of thin flows with resetting as linear complementarity problem and its analysis. We present a constructive proof of existence for dynamic equilibria if the inflow rate is right-monotone. The complexity of computing thin flows with resetting, which occurs as a subproblem in this method, is still open. We settle it for the class of two-terminal series-parallel networks by giving a recursive algorithm that solves the problem for all flow values simultaneously in polynomial time.
We investigate the problem of equilibrium computation for large $n$-player games. Large games have a Lipschitz-type property that no single players utility is greatly affected by any other individual players actions. In this paper, we mostly focus on
We study the allocative challenges that governmental and nonprofit organizations face when tasked with equitable and efficient rationing of a social good among agents whose needs (demands) realize sequentially and are possibly correlated. To better a
We introduce the Adaptive Massively Parallel Computation (AMPC) model, which is an extension of the Massively Parallel Computation (MPC) model. At a high level, the AMPC model strengthens the MPC model by storing all messages sent within a round in a
We study the rise in the acceptability fiat money in a Kiyotaki-Wright economy by developing a method that can determine dynamic Nash equilibria for a class of search models with genuine heterogenous agents. We also address open issues regarding the
Public goods games in undirected networks are generally known to have pure Nash equilibria, which are easy to find. In contrast, we prove that, in directed networks, a broad range of public goods games have intractable equilibrium problems: The exist