ﻻ يوجد ملخص باللغة العربية
In-vivo, real-time study of the local and collective cellular biomechanical responses requires the fine and selective manipulation of the cellular environment. One innovative pathway is the use of photoactive bio-substrates such as azobenzene-containing materials (azopolymers), with optically tunable properties. In this work we show an innovative simple method to optically stimulate cells locally, by light-excitation of an azo-polymer derivative bio-substrate. Excited cells exhibit spectacular motility and reversible area shrinkage, which is dependent on the illumination. The photomechanical mechanisms taking place at the substrate and the cell/environment mechanical phenomena require further investigation.
Growth of perovskite oxide thin films on Si in crystalline form has long been a critical obstacle for the integration of multifunctional oxides into Si-based technologies. In this study, we propose pulsed laser deposition of a crystalline SrTiO3 thin
Infrared (IR) transmittance tunable metal-insulator conversion was demonstrated on glass substrate by using thermochromic vanadium dioxide (VO2) as the active layer in three-terminal thin-film-transistor-type device with water-infiltrated glass as th
We report a scalable approach to synthesize a large-area (up to 4 mm) thin black phosphorus (BP) film on a flexible substrate. We first deposited a red phosphorus (RP) thin-film on a flexible polyester substrate, followed by its conversion to BP in a
Bending effect on the magnetic anisotropy in 20 nm Co$_{2}$FeAl Heusler thin film grown on Kaptontextregistered{} has been studied by ferromagnetic resonance and glued on curved sample carrier with various radii. The results reported in this letter s
The surface termination of (100)-oriented LaAlO3 (LAO) single crystals was examined by atomic force microscopy and optimized to produce a single-terminated atomically flat surface by annealing. Then the atomically flat STO film was achieved on a sing