ﻻ يوجد ملخص باللغة العربية
Deep neural network powered artificial intelligence has rapidly changed our daily life with various applications. However, as one of the essential steps of deep neural networks, training a heavily weighted network requires a tremendous amount of computing resources. Especially in the post-Moores Law era, the limit of semiconductor fabrication technology has restricted the development of learning algorithms to cope with the increasing high-intensity training data. Meanwhile, quantum computing has demonstrated its significant potential in terms of speeding up the traditionally compute-intensive workloads. For example, Google illustrated quantum supremacy by completing a sampling calculation task in 200 seconds, which is otherwise impracticable on the worlds largest supercomputers. To this end, quantum-based learning has become an area of interest, with the potential of a quantum speedup. In this paper, we propose GenQu, a hybrid and general-purpose quantum framework for learning classical data through quantum states. We evaluate GenQu with real datasets and conduct experiments on both simulations and real quantum computer IBM-Q. Our evaluation demonstrates that, compared with classical solutions, the proposed models running on GenQu framework achieve similar accuracy with a much smaller number of qubits, while significantly reducing the parameter size by up to 95.86% and converging speedup by 33.33% faster.
Hamiltonian learning is crucial to the certification of quantum devices and quantum simulators. In this paper, we propose a hybrid quantum-classical Hamiltonian learning algorithm to find the coefficients of the Pauli operator components of the Hamil
Despite the successes of recent works in quantum reinforcement learning, there are still severe limitations on its applications due to the challenge of encoding large observation spaces into quantum systems. To address this challenge, we propose usin
We deal with the reversible dynamics of coupled quantum and classical systems. Based on a recent proposal by the authors, we exploit the theory of hybrid quantum-classical wavefunctions to devise a closure model for the coupled dynamics in which both
Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One example of such a hybrid quantum-classical approach is the variational quantum eigensolver (VQE) built to utilize quantum
In order to support near-term applications of quantum computing, a new compute paradigm has emerged--the quantum-classical cloud--in which quantum computers (QPUs) work in tandem with classical computers (CPUs) via a shared cloud infrastructure. In t