ﻻ يوجد ملخص باللغة العربية
In order to support near-term applications of quantum computing, a new compute paradigm has emerged--the quantum-classical cloud--in which quantum computers (QPUs) work in tandem with classical computers (CPUs) via a shared cloud infrastructure. In this work, we enumerate the architectural requirements of a quantum-classical cloud platform, and present a framework for benchmarking its runtime performance. In addition, we walk through two platform-level enhancements, parametric compilation and active qubit reset, that specifically optimize a quantum-classical architecture to support variational hybrid algorithms (VHAs), the most promising applications of near-term quantum hardware. Finally, we show that integrating these two features into the Rigetti Quantum Cloud Services (QCS) platform results in considerable improvements to the latencies that govern algorithm runtime.
Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as the quantum variational eigensolver was developed with the phil
Quantum computers can exploit a Hilbert space whose dimension increases exponentially with the number of qubits. In experiment, quantum supremacy has recently been achieved by the Google team by using a noisy intermediate-scale quantum (NISQ) device
The solving of linear systems provides a rich area to investigate the use of nearer-term, noisy, intermediate-scale quantum computers. In this work, we discuss hybrid quantum-classical algorithms for skewed linear systems for over-determined and unde
Variational quantum eigensolver~(VQE) typically optimizes variational parameters in a quantum circuit to prepare eigenstates for a quantum system. Its applications to many problems may involve a group of Hamiltonians, e.g., Hamiltonian of a molecule
We report, in a sequence of notes, our work on the Alibaba Cloud Quantum Development Platform(AC-QDP). AC-QDP provides a set of tools for aiding the development of both quantum computing algorithms and quantum processors, and is powered by a large-sc