ﻻ يوجد ملخص باللغة العربية
We investigate the use of approximate Bayesian neural networks (BNNs) in modeling hundreds of time-delay gravitational lenses for Hubble constant ($H_0$) determination. Our BNN was trained on synthetic HST-quality images of strongly lensed active galactic nuclei (AGN) with lens galaxy light included. The BNN can accurately characterize the posterior PDFs of model parameters governing the elliptical power-law mass profile in an external shear field. We then propagate the BNN-inferred posterior PDFs into ensemble $H_0$ inference, using simulated time delay measurements from a plausible dedicated monitoring campaign. Assuming well-measured time delays and a reasonable set of priors on the environment of the lens, we achieve a median precision of $9.3$% per lens in the inferred $H_0$. A simple combination of 200 test-set lenses results in a precision of 0.5 $textrm{km s}^{-1} textrm{ Mpc}^{-1}$ ($0.7%$), with no detectable bias in this $H_0$ recovery test. The computation time for the entire pipeline -- including the training set generation, BNN training, and $H_0$ inference -- translates to 9 minutes per lens on average for 200 lenses and converges to 6 minutes per lens as the sample size is increased. Being fully automated and efficient, our pipeline is a promising tool for exploring ensemble-level systematics in lens modeling for $H_0$ inference.
We propose a new model of Bayesian Neural Networks to not only detect the events of compact binary coalescence in the observational data of gravitational waves (GW) but also identify the full length of the event duration including the inspiral stage.
In the past few years, approximate Bayesian Neural Networks (BNNs) have demonstrated the ability to produce statistically consistent posteriors on a wide range of inference problems at unprecedented speed and scale. However, any disconnect between tr
We seek to achieve the Holy Grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior $p(theta|D)$ for the source parameters $theta$, given the detector data $D$. To do so, we trai
It is well known that measurements of H0 from gravitational lens time delays scale as H0~1-k_E where k_E is the mean convergence at the Einstein radius R_E but that all available lens data other than the delays provide no direct constraints on k_E. T
Future large-scale surveys with high resolution imaging will provide us with a few $10^5$ new strong galaxy-scale lenses. These strong lensing systems however will be contained in large data amounts which are beyond the capacity of human experts to v