ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser Processing For 3D Junctionless Transistor Fabrication

100   0   0.0 ( 0 )
 نشر من قبل Francois Andrieu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To take fully advantage of Junctionless transistor (JLT) low-cost and low-temperature features we investigate a 475 degC process to create onto a wafer a thin poly-Si layer on insulator. We fabricated a 13nm doped (Phosphorous, 1E19 at/cm3) poly-silicon film featuring excellent roughness values (Rmax= 1.6nm and RMS=0.2nm). Guidelines for grain size optimization using nanosecond (ns) laser annealing are given.



قيم البحث

اقرأ أيضاً

Laser polymerization has emerged as a direct writing technique allowing the fabrication of complex 3D structures with microscale resolution. The technique provides rapid prototyping capabilities for a broad range of applications, but to meet the grow ing interest in 3D nanoscale structures the resolution limits need to be pushed beyond the 100 nm benchmark, which is challenging in practical implementations. As a possible path towards this goal, a post processing of laser polymerized structures is presented. Precise control of the cross-sectional dimensions of structural elements as well as tuning of an overall size of the entire 3D structure was achieved by combining isotropic plasma etching and pyrolysis. The smallest obtainable feature sizes are mostly limited by the mechanical properties of the polymerized resist and the geometry of 3D structure. Thus the demonstrated post processing steps open new avenues to explore free form 3D structures at the nanoscale.
370 - M. Ezzadeen , D. Bosch , B. Giraud 2020
The Von-Neumann bottleneck is a clear limitation for data-intensive applications, bringing in-memory computing (IMC) solutions to the fore. Since large data sets are usually stored in nonvolatile memory (NVM), various solutions have been proposed bas ed on emerging memories, such as OxRAM, that rely mainly on area hungry, one transistor (1T) one OxRAM (1R) bit-cell. To tackle this area issue, while keeping the programming control provided by 1T1R bit-cell, we propose to combine gate-all-around stacked junctionless nanowires (1JL) and OxRAM (1R) technology to create a 3-D memory pillar with ultrahigh density. Nanowire junctionless transistors have been fabricated, characterized, and simulated to define current conditions for the whole pillar. Finally, based on Simulation Program with Integrated Circuit Emphasis (SPICE) simulations, we demonstrated successfully scouting logic operations up to three-pillar layers, with one operand per layer.
83 - D. V. Bochek 2020
We experimentally demonstrate fabrication of tunable high contrast periodic fishnet metasurfaces with 3 um period on 200 nm thick Ge2Sb2Te5 films sputted onto glass and sapphire substrates using direct laser writing technique. We find that the use of sapphire substrate provides better accuracy of metasurface segments due to high thermal conductivity. The advantages of the demonstrated method consist in its simplicity, rapidity, robustness, and the ability of tuning of fabricated structures. This is of crucial importance for the creation of robust and tunable metasurfaces for applications in the field of telecommunications and information processing.
An all-epitaxial approach was demonstrated to create coaxial plasmon laser structures composed of an alumi-num plasmonic metal / SiNx dielectric / InGaN quantum well shell surrounding a p-GaN nanowire core. Strong UV lumi-nescence was observed from a s-grown vertically-aligned arrays as well as horizontally-aligned nanowires transferred to a transparent carrier wafer.
Carbon Nanotubes (CNTs)-polymer composites are promising candidates for a myriad of applications. Ad-hoc CNTs-polymer composite fabrication techniques inherently pose roadblock to optimized processing resulting in microstructural defects i.e., void f ormation, poor interfacial adhesion, wettability, and agglomeration of CNTs inside the polymer matrix. Although improvement in the microstructures can be achieved via additional processing steps such as-mechanical methods and/or chemical functionalization, the resulting composites are somewhat limited in structural and functional performances. Here, we demonstrate that 3D printing technique like-direct ink writing offers improved processing of CNTs-polymer composites. The shear-induced flow of an engineered nanocomposite ink through the micronozzle offers some benefits including reducing the number of voids within the epoxy, improving CNTs dispersion and adhesion with epoxy, and partially aligns the CNTs. Such microstructural changes result in superior mechanical performance and heat transfer in the composites compared to their mold-casted counterparts. This work demonstrates the advantages of 3D printing over traditional fabrication methods, beyond the ability to rapidly fabricate complex architectures, to achieve improved processing dynamics for fabricating CNT-polymer nanocomposites with better structural and functional properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا