ترغب بنشر مسار تعليمي؟ اضغط هنا

Processing Dynamics of 3D-Printed Carbon Nanotubes-Epoxy Composites

120   0   0.0 ( 0 )
 نشر من قبل Muhammad Rahman
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Carbon Nanotubes (CNTs)-polymer composites are promising candidates for a myriad of applications. Ad-hoc CNTs-polymer composite fabrication techniques inherently pose roadblock to optimized processing resulting in microstructural defects i.e., void formation, poor interfacial adhesion, wettability, and agglomeration of CNTs inside the polymer matrix. Although improvement in the microstructures can be achieved via additional processing steps such as-mechanical methods and/or chemical functionalization, the resulting composites are somewhat limited in structural and functional performances. Here, we demonstrate that 3D printing technique like-direct ink writing offers improved processing of CNTs-polymer composites. The shear-induced flow of an engineered nanocomposite ink through the micronozzle offers some benefits including reducing the number of voids within the epoxy, improving CNTs dispersion and adhesion with epoxy, and partially aligns the CNTs. Such microstructural changes result in superior mechanical performance and heat transfer in the composites compared to their mold-casted counterparts. This work demonstrates the advantages of 3D printing over traditional fabrication methods, beyond the ability to rapidly fabricate complex architectures, to achieve improved processing dynamics for fabricating CNT-polymer nanocomposites with better structural and functional properties.



قيم البحث

اقرأ أيضاً

In this work, We combined fully atomistic molecular dynamics and finite elements simulations with mechanical testings to investigate the mechanical behavior of atomic and 3D-printed models of pentadiamond. Pentadiamond is a recently proposed new carb on allotrope, which is composed of a covalent network of pentagonal rings. Our results showed that the stress-strain behavior is almost scale-independent. The stress-strain curves of the 3D-printed structures exhibit three characteristic regions. For low-strain values, this first region presents a non-linear behavior close to zero, followed by a well-defined linear behavior. The second regime is a quasi-plastic one and the third one is densification followed by structural failures (fracture). The Youngs modulus values decrease with the number of pores. The deformation mechanism is bending-dominated and different from the layer-by-layer deformation mechanism observed for other 3D-printed structures. They exhibit good energy absorption capabilities, with some structures even outperforming kevlar. Interestingly, considering the Ashby chart, 3D-printed pentadiamond lies almost on the ideal stretch and bending-dominated lines, making them promising materials for energy absorption applications.
Specific strength (strength/density) is a crucial factor while designing high load bearing architecture in areas of aerospace and defence. Strength of the material can be enhanced by blending with high strength component or, by compositing with high strength fillers but both the options has limitations such as at certain load, materials fail due to poor filler and matrix interactions. Therefore, researchers are interested in enhancing strength of materials by playing with topology/geometry and therefore nature is best option to mimic for structures whereas, complexity limits nature mimicked structures. In this paper, we have explored Zeolite-inspired structures for load bearing capacity. Zeolite-inspired structure were obtained from molecular dynamics simulation and then fabricated via Fused deposition Modeling. The atomic scale complex topology from simulation is experimentally synthesized using 3D printing. Compressibility of as-fabricated structures was tested in different direction and compared with simulation results. Such complex architecture can be used for ultralight aerospace and automotive parts.
Single-walled carbon nanotubes (SWCNT) can be assembled into various macroscopic architectures, most notably continuous fibers and films, produced currently on a kilometer per day scale by floating catalyst chemical vapor depositionand spinning from an aerogel of CNTs. An attractive challenge is to produce continuous fibers with controlled molecular structure with respect to the diameter, chiral angle and ultimately(n,m)indices of the constituent SWCNT molecules. This work presents an extensive Raman spectroscopy and high resolution transmission electron microscopy study of SWCNT aerogels produced by the direct spinning method. By retaining the open structure of the SWCNT aerogel, we reveal the presence of both semiconducting and metallic SWCNTs and determine a full distribution of families of SWCNT grouped by optical transitions. The resulting distribution matches the chiral angle distribution obtained by electron microscopy and electron diffraction. The effect of SWCNT bundling on the Raman spectra, such as the G line shape due to plasmons activated in the far-infrared and semiconductor quenching, are also discussed. By avoiding full aggregation of the aerogel and applying the methodology introduced, rapid screening of molecular features can be achieved in large samples, making this protocol a useful analysis tool for engineered SWCNT fibers and related systems.
Radio, millimetre and sub-millimetre astronomy experiments as well as remote sensing applications often require castable absorbers with well known electromagnetic properties to design and realize calibration targets. In this context, we fabricated an d characterized two samples using different ratios of two easily commercially available materials: epoxy (Stycast 2850FT) and magnetite ($mathrm{Fe_{3}O_{4}}$) powder. We performed transmission and reflection measurements from 7 GHz up to 170 GHz with a VNA equipped with a series of standard horn antennas. Using an empirical model we analysed the data to extract complex permittivity and permeability from transmission data; then we used reflection data to validate the results. In this paper we present the sample fabrication procedure, analysis method, parameter extraction pipeline, and results for two samples with different epoxy-powder mass ratios.
Triply Periodic Minimal Surfaces (TPMS) possess locally minimized surface area under the constraint of periodic boundary conditions. Different families of surfaces were obtained with different topologies satisfying such conditions. Examples of such f amilies include Primitive (P), Gyroid (G) and Diamond (D) surfaces. From a purely mathematical subject, TPMS have been recently found in materials science as optimal geometries for structural applications. Proposed by Mackay and Terrones in 1991, schwarzites are 3D crystalline porous carbon nanocrystals exhibiting the shape of TPMS. Although their complex topology poses serious limitations on their synthesis with conventional nanoscale fabrication methods, such as Chemical Vapour Deposition (CVD), TPMS can be fabricated by Additive Manufacturing (AM) techniques, such as 3D Printing. In this work, we used an optimized atomic model of a schwarzite structure from the D family (D8bal) to generate a surface mesh that was subsequently used for 3D-printing through Fused Deposition Modelling (FDM). This D schwarzite was 3D-printed with thermoplastic PolyLactic Acid (PLA) polymer filaments. Mechanical properties under uniaxial compression were investigated for both the atomic model and the 3D-printed one. Fully atomistic Molecular Dynamics (MD) simulations were also carried out to investigate the uniaxial compression behavior of the D8bal atomic model. Mechanical testings were performed on the 3D-printed schwarzite where the deformation mechanisms were found to be similar to those observed in MD simulations. These results are suggestive of a scale-independent mechanical behavior that is dominated by structural topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا