ﻻ يوجد ملخص باللغة العربية
As a complementary analysis tool to conventional high-field NMR, zero- to ultralow-field (ZULF) NMR detects nuclear magnetization signals in the sub-microtesla regime. Spin-exchange relaxation-free (SERF) atomic magnetometers provide a new generation of sensitive detector for ZULF NMR. Due to the features such as low-cost, high-resolution and potability, ZULF NMR has recently attracted considerable attention in chemistry, biology, medicine, and tests of fundamental physics. This review describes the basic principles, methodology and recent experimental and theoretical development of ZULF NMR, as well as its applications in spectroscopy, quantum control, imaging, NMR-based quantum devices, and tests of fundamental physics. The future prospects of ZULF NMR are also discussed.
Ultralow-field nuclear magnetic resonance (NMR) provides a new regime for many applications ranging from materials science to fundamental physics. However, the experimentally observed spectra show asymmetric amplitudes, differing greatly from those p
Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is an alternative spectroscopic method to high-field NMR, in which samples are studied in the absence of a large magnetic field. Unfortunately, there is a large barrier to entry for many g
This paper describes a general method for manipulation of nuclear spins in zero magnetic field. In the absence of magnetic fields, the spins lose the individual information on chemical shifts and inequivalent spins can only be distinguished by nuclea
The nature of dark matter, the invisible substance making up over $80%$ of the matter in the Universe, is one of the most fundamental mysteries of modern physics. Ultralight bosons such as axions, axion-like particles or dark photons could make up mo
We present single- and multiple-quantum correlation $J$-spectroscopy detected in zero ($<!!1$~$mu$G) magnetic field using a Rb vapor-cell magnetometer. At zero field the spectrum of ethanol appears as a mixture of carbon isotopomers, and correlation