ترغب بنشر مسار تعليمي؟ اضغط هنا

Selection Rule for Topological Amplifiers in Bogoliubov de Gennes Systems

83   0   0.0 ( 0 )
 نشر من قبل Hong Ling
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dynamical instability is an inherent feature of bosonic systems described by the Bogoliubov de Geenes (BdG) Hamiltonian. Since it causes the BdG system to collapse, it is generally thought that it should be avoided. Recently, there has been much effort to harness this instability for the benefit of creating a topological amplifier with stable bulk bands but unstable edge modes which can be populated at an exponentially fast rate. We present a theorem for determining the stability of states with energies sufficiently away from zero, in terms of an unconventional commutator between the number conserving part and number nonconserving part of the BdG Hamiltonian. We apply the theorem to a generalization of a model from Galilo et al. [Phys. Rev. Lett, 115, 245302(2015)] for creating a topological amplifier in an interacting spin-1 atom system in a honeycomb lattice through a quench process. We use this model to illustrate how the vanishing of the unconventional commutator selects the symmetries for a system so that its bulk states are stable against (weak) pairing interactions. We find that as long as time reversal symmetry is preserved, our system can act like a topological amplifier, even in the presence of an onsite staggered potential which breaks the inversion symmetry.



قيم البحث

اقرأ أيضاً

We develop a systematic approach for constructing symmetry-based indicators of a topological classification for superconducting systems. The topological invariants constructed in this work form a complete set of symmetry-based indicators that can be computed from knowledge of the Bogoliubov-de Gennes Hamiltonian on high-symmetry points in Brillouin zone. After excluding topological invariants corresponding to the phases without boundary signatures, we arrive at natural generalization of symmetry-based indicators [H. C. Po, A. Vishwanath, and H. Watanabe, Nature Comm. 8, 50 (2017)] to Hamiltonians of Bogoliubov-de Gennes type.
We consider Bogoliubov de Gennes equation on metric graphs. The vertex boundary conditions providing self-adjoint realization of the Bogoliubov de Gennes operator on a metric star graph are derived. Secular equation providing quantization of the ener gy and the vertex transmission matrix are also obtained. Application of the model for Majorana wire networks is discussed.
We study a Majorana zero-energy state bound to a hedgehog-like point defect in a topological superconductor described by a Bogoliubov-de Gennes (BdG)-Dirac type effective Hamiltonian. We first give an explicit wave function of a Majorana state by sol ving the BdG equation directly, from which an analytical index can be obtained. Next, by calculating the corresponding topological index, we show a precise equivalence between both indices to confirm the index theorem. Finally, we apply this observation to reexamine the role of another topological invariant, i.e., the Chern number associated with the Berry curvature proposed in the study of protected zero modes along the lines of topological classification of insulators and superconductors. We show that the Chern number is equivalent to the topological index, implying that it indeed reflects the number of zero-energy states. Our theoretical model belongs to the BDI class from the viewpoint of symmetry, whereas the spatial dimension of the system is left arbitrary throughout the paper.
167 - Simon Lieu 2018
The Bernard-LeClair (BL) symmetry classes generalize the ten-fold way classes in the absence of Hermiticity. Within the BL scheme, time-reversal and particle-hole come in two flavors, and pseudo-Hermiticity generalizes Hermiticity. We propose that th ese symmetries are relevant for the topological classification of non-Hermitian single-particle Hamiltonians and Hermitian bosonic Bogoliubov-de Gennes (BdG) models. We show that the spectrum of any Hermitian bosonic BdG Hamiltonian is found by solving for the eigenvalues of a non-Hermitian matrix which belongs to one of the BL classes. We therefore suggest that bosonic BdG Hamiltonians inherit the topological properties of a non-Hermitian symmetry class and explore the consequences by studying symmetry-protected edge instabilities in a simple 1D system.
We show that the topological phase transition for a Kitaev chain embedded in a cavity can be identified by measuring experimentally accessible photon observables such as the Fano factor and the cavity quadrature amplitudes. Moreover, based on density matrix renormalization group numerical calculations, endorsed by an analytical Gaussian approximation for the cavity state, we propose a direct link between those observables and quantum entropy singularities. We study two bipartite entanglement measures, the von Neumann and Renyi entanglement entropies, between light and matter subsystems. Even though both display singularities at the topological phase transition points, remarkably only the Renyi entropy can be analytically connected to the measurable Fano factor. Consequently, we show a method to recover the bipartite entanglement of the system from a cavity observable. Thus, we put forward a path to experimentally access the control and detection of a topological quantum phase transition via the Renyi entropy, which can be measured by standard low noise linear amplification techniques in superconducting circuits. In this way, the main quantum information features of Majorana polaritons in photon-fermion systems can be addressed in feasible experimental setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا