ﻻ يوجد ملخص باللغة العربية
We show that the topological phase transition for a Kitaev chain embedded in a cavity can be identified by measuring experimentally accessible photon observables such as the Fano factor and the cavity quadrature amplitudes. Moreover, based on density matrix renormalization group numerical calculations, endorsed by an analytical Gaussian approximation for the cavity state, we propose a direct link between those observables and quantum entropy singularities. We study two bipartite entanglement measures, the von Neumann and Renyi entanglement entropies, between light and matter subsystems. Even though both display singularities at the topological phase transition points, remarkably only the Renyi entropy can be analytically connected to the measurable Fano factor. Consequently, we show a method to recover the bipartite entanglement of the system from a cavity observable. Thus, we put forward a path to experimentally access the control and detection of a topological quantum phase transition via the Renyi entropy, which can be measured by standard low noise linear amplification techniques in superconducting circuits. In this way, the main quantum information features of Majorana polaritons in photon-fermion systems can be addressed in feasible experimental setups.
While spin-orbit coupling (SOC), an essential mechanism underlying quantum phenomena from the spin Hall effect to topological insulators, has been widely studied in well-isolated Hermitian systems, much less is known when the dissipation plays a majo
Dynamical instability is an inherent feature of bosonic systems described by the Bogoliubov de Geenes (BdG) Hamiltonian. Since it causes the BdG system to collapse, it is generally thought that it should be avoided. Recently, there has been much effo
The last years have witnessed rapid progress in the topological characterization of out-of-equilibrium systems. We report on robust signatures of a new type of topology -- the Euler class -- in such a dynamical setting. The enigmatic invariant $(xi)$
Self organisation provides an elegant explanation for how complex structures emerge and persist throughout nature. Surprisingly often, these structures exhibit remarkably similar scale-invariant properties. While this is sometimes captured by simple
The main theme of this review is the many-body physics of vortices in quantum droplets of bosons or fermions, in the limit of small particle numbers. Systems of interest include cold atoms in traps as well as electrons confined in quantum dots. When