ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the contextual variant of the MNL-Bandit problem. More specifically, we consider a dynamic set optimization problem, where in every round a decision maker offers a subset (assortment) of products to a consumer, and observes their response. Consumers purchase products so as to maximize their utility. We assume that the products are described by a set of attributes and the mean utility of a product is linear in the values of these attributes. We model consumer choice behavior by means of the widely used Multinomial Logit (MNL) model, and consider the decision makers problem of dynamically learning the model parameters, while optimizing cumulative revenue over the selling horizon $T$. Though this problem has attracted considerable attention in recent times, many existing methods often involve solving an intractable non-convex optimization problem and their theoretical performance guarantees depend on a problem dependent parameter which could be prohibitively large. In particular, existing algorithms for this problem have regret bounded by $O(sqrt{kappa d T})$, where $kappa$ is a problem dependent constant that can have exponential dependency on the number of attributes. In this paper, we propose an optimistic algorithm and show that the regret is bounded by $O(sqrt{dT} + kappa)$, significantly improving the performance over existing methods. Further, we propose a convex relaxation of the optimization step which allows for tractable decision-making while retaining the favourable regret guarantee.
We study multinomial logit bandit with limited adaptivity, where the algorithms change their exploration actions as infrequently as possible when achieving almost optimal minimax regret. We propose two measures of adaptivity: the assortment switching
Motivated by the phenomenon that companies introduce new products to keep abreast with customers rapidly changing tastes, we consider a novel online learning setting where a profit-maximizing seller needs to learn customers preferences through offeri
We investigate the sparse linear contextual bandit problem where the parameter $theta$ is sparse. To relieve the sampling inefficiency, we utilize the perturbed adversary where the context is generated adversarilly but with small random non-adaptive
In this paper, we study Contextual Unsupervised Sequential Selection (USS), a new variant of the stochastic contextual bandits problem where the loss of an arm cannot be inferred from the observed feedback. In our setup, arms are associated with fixe
In this work, we describe practical lessons we have learned from successfully using contextual bandits (CBs) to improve key business metrics of the Microsoft Virtual Agent for customer support. While our current use cases focus on single step einforc