ﻻ يوجد ملخص باللغة العربية
We study multinomial logit bandit with limited adaptivity, where the algorithms change their exploration actions as infrequently as possible when achieving almost optimal minimax regret. We propose two measures of adaptivity: the assortment switching cost and the more fine-grained item switching cost. We present an anytime algorithm (AT-DUCB) with $O(N log T)$ assortment switches, almost matching the lower bound $Omega(frac{N log T}{ log log T})$. In the fixed-horizon setting, our algorithm FH-DUCB incurs $O(N log log T)$ assortment switches, matching the asymptotic lower bound. We also present the ESUCB algorithm with item switching cost $O(N log^2 T)$.
Motivated by the phenomenon that companies introduce new products to keep abreast with customers rapidly changing tastes, we consider a novel online learning setting where a profit-maximizing seller needs to learn customers preferences through offeri
In this paper, we consider the contextual variant of the MNL-Bandit problem. More specifically, we consider a dynamic set optimization problem, where in every round a decision maker offers a subset (assortment) of products to a consumer, and observes
This paper deals with bandit online learning problems involving feedback of unknown delay that can emerge in multi-armed bandit (MAB) and bandit convex optimization (BCO) settings. MAB and BCO require only values of the objective function involved th
Real-world classification problems typically exhibit an imbalanced or long-tailed label distribution, wherein many labels are associated with only a few samples. This poses a challenge for generalisation on such labels, and also makes naive learning
Adam is a widely used optimization method for training deep learning models. It computes individual adaptive learning rates for different parameters. In this paper, we propose a generalization of Adam, called Adambs, that allows us to also adapt to d