ﻻ يوجد ملخص باللغة العربية
We study correlation functions involving generalized ANEC operators of the form $int dx^- left(x^-right)^{n+2} T_{--}(vec{x})$ in four dimensions. We compute two, three, and four-point functions involving external scalar states in both free and holographic Conformal Field Theories. From this information, we extract the algebra of these light-ray operators. We find a global subalgebra spanned by $n={-2, -1, 0, 1, 2}$ which annihilate the conformally invariant vacuum and transform among themselves under the action of the collinear conformal group that preserves the light-ray. Operators outside this range give rise to an infinite central term, in agreement with previous suggestions in the literature. In free theories, even some of the operators inside the global subalgebra fail to commute when placed at spacelike separation on the same null-plane. This lack of commutativity is not integrable, presenting an obstruction to the construction of a well defined light-ray algebra at coincident $vec{x}$ coordinates. For holographic CFTs the behavior worsens and operators with $n eq -2$ fail to commute at spacelike separation. We reproduce this result in the bulk of AdS where we present new exact shockwave solutions dual to the insertions of these (exponentiated) operators on the boundary.
We discuss some general aspects of commutators of local operators in Lorentzian CFTs, which can be obtained from a suitable analytic continuation of the Euclidean operator product expansion (OPE). Commutators only make sense as distributions, and car
An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector
A short review of the Operator/Feynman diagram/dessin denfants correspondence in the rank 3 tensor model is presented, and the cut & join operation is given in the language of dessin denfants as a straightforward development. We classify operators of
We use the subleading soft-graviton theorem to construct an operator $T_{zz}$ whose insertion in the four-dimensional tree-level quantum gravity $mathcal{S}$-matrix obeys the Virasoro-Ward identities of the energy momentum tensor of a two-dimensional
We extend previous work on the numerical diagonalization of quantum stress tensor operators in the Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators averaged in a finite spacetime region. Since real e