ترغب بنشر مسار تعليمي؟ اضغط هنا

Space and Time Averaged Quantum Stress Tensor Fluctuations

92   0   0.0 ( 0 )
 نشر من قبل Peter Wu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend previous work on the numerical diagonalization of quantum stress tensor operators in the Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators averaged in a finite spacetime region. Since real experiments occur over finite volumes and durations, physically meaningful fluctuations may be obtained from stress tensor operators averaged by compactly supported sampling functions in space and time. The direct diagonalization, via a Bogoliubov transformation, gives the eigenvalues and the probabilities of measuring those eigenvalues in the vacuum state, from which the underlying probability distribution can be constructed. For the normal-ordered square of the time derivative of a massless scalar field in a spherical cavity with finite degrees of freedom, analysis of the tails of these distributions confirms previous results based on the analytical treatment of the high moments. We find that the probability of large vacuum fluctuations is reduced when spatial averaging is included, but the tail still decreases more slowly than exponentially as the magnitude of the measured eigenvalues increases, suggesting vacuum fluctuations may not always be subdominant to thermal fluctuations and opening up the possibility of experimental observation under the right conditions.



قيم البحث

اقرأ أيضاً

116 - T. Banks 2020
The formalism of Holographic Space-time (HST) is a translation of the principles of Lorentzian geometry into the language of quantum information. Intervals along time-like trajectories, and their associated causal diamonds, completely characterize a Lorentzian geometry. The Bekenstein-Hawking-Gibbons-t Hooft-Jacobson-Fischler-Susskind-Bousso Covariant Entropy Principle, equates the logarithm of the dimension of the Hilbert space associated with a diamond to one quarter of the area of the diamonds holographic screen, measured in Planck units. The most convincing argument for this principle is Jacobsons derivation of Einsteins equations as the hydrodynamic expression of this entropy law. In that context, the null energy condition (NEC) is seen to be the analog of the local law of entropy increase. The quantum version of Einsteins relativity principle is a set of constraints on the mutual quantum information shared by causal diamonds along different time-like trajectories. The implementation of this constraint for trajectories in relative motion is the greatest unsolved problem in HST. The other key feature of HST is its claim that, for non-negative cosmological constant or causal diamonds much smaller than the asymptotic radius of curvature for negative c.c., the degrees of freedom localized in the bulk of a diamond are constrained states of variables defined on the holographic screen. This principle gives a simple explanation of otherwise puzzling features of BH entropy formulae, and resolves the firewall problem for black holes in Minkowski space. It motivates a covariant version of the CKNcite{ckn} bound on the regime of validity of quantum field theory (QFT) and a detailed picture of the way in which QFT emerges as an approximation to the exact theory.
126 - Michele Arzano 2020
It is shown how the characteristic thermal effects that observers experience in space-times possessing an event horizon can manifest already in a simple quantum system with affine symmetry living on the real line. The derivation presented is essentia lly group theoretic in nature: a thermal state emerges naturally when comparing different representations of the group of affine transformations of the real line. The freedom in the choice of different notions of translation generators is the key to the Unruh effect on a line we describe.
We use the subleading soft-graviton theorem to construct an operator $T_{zz}$ whose insertion in the four-dimensional tree-level quantum gravity $mathcal{S}$-matrix obeys the Virasoro-Ward identities of the energy momentum tensor of a two-dimensional conformal field theory (CFT$_2$). The celestial sphere at Minkowskian null infinity plays the role of the Euclidean sphere of the CFT$_2$, with the Lorentz group acting as the unbroken $SL(2,mathbb{C})$ subgroup.
In this work quantum physics in noncommutative spacetime is developed. It is based on the work of Doplicher et al. which allows for time-space noncommutativity. The Moyal plane is treated in detail. In the context of noncommutative quantum mechanics, some important points are explored, such as the formal construction of the theory, symmetries, causality, simultaneity and observables. The dynamics generated by a noncommutative Schrodinger equation is studied. We prove in particular the following: suppose the Hamiltonian of a quantum mechanical particle on spacetime has no explicit time dependence, and the spatial coordinates commute in its noncommutative form (the only noncommutativity being between time and a space coordinate). Then the commutative and noncommutati
We define bulk/boundary maps corresponding to quantum gravity states in the tensorial group field theory formalism, for quantum geometric models sharing the same type of quantum states of loop quantum gravity. The maps are defined in terms of a parti tion of the quantum geometric data associated to an open graph into bulk and boundary ones, in the spin representation. We determine the general condition on the entanglement structure of the state that makes the bulk/boundary map isometric (a necessary condition for holographic behaviour), and we analyse different types of quantum states, identifying those that define isometric bulk/boundary maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا