ﻻ يوجد ملخص باللغة العربية
This article studies global testing of the slope function in functional linear regression model in the framework of reproducing kernel Hilbert space. We propose a new testing statistic based on smoothness regularization estimators. The asymptotic distribution of the testing statistic is established under null hypothesis. It is shown that the null asymptotic distribution is determined jointly by the reproducing kernel and the covariance function. Our theoretical analysis shows that the proposed testing is consistent over a class of smooth local alternatives. Despite the generality of the method of regularization, we show the procedure is easily implementable. Numerical examples are provided to demonstrate the empirical advantages over the competing methods.
Recently, the well known Liu estimator (Liu, 1993) is attracted researchers attention in regression parameter estimation for an ill conditioned linear model. It is also argued that imposing sub-space hypothesis restriction on parameters improves esti
In functional linear regression, the slope ``parameter is a function. Therefore, in a nonparametric context, it is determined by an infinite number of unknowns. Its estimation involves solving an ill-posed problem and has points of contact with a ran
This paper deals with order identification for nested models in the i.i.d. framework. We study the asymptotic efficiency of two generalized likelihood ratio tests of the order. They are based on two estimators which are proved to be strongly consiste
In this paper we consider the linear regression model $Y =S X+varepsilon $ with functional regressors and responses. We develop new inference tools to quantify deviations of the true slope $S$ from a hypothesized operator $S_0$ with respect to the Hi
In a regression setting with response vector $mathbf{y} in mathbb{R}^n$ and given regressor vectors $mathbf{x}_1,ldots,mathbf{x}_p in mathbb{R}^n$, a typical question is to what extent $mathbf{y}$ is related to these regressor vectors, specifically,