ﻻ يوجد ملخص باللغة العربية
Recently, the well known Liu estimator (Liu, 1993) is attracted researchers attention in regression parameter estimation for an ill conditioned linear model. It is also argued that imposing sub-space hypothesis restriction on parameters improves estimation by shrinking toward non-sample information. Chang (2015) proposed the almost unbiased Liu estimator (AULE) in the binary logistic regression. In this article, some improved unbiased Liu type estimators, namely, restricted AULE, preliminary test AULE, Stein-type shrinkage AULE and its positive part for estimating the regression parameters in the binary logistic regression model are proposed based on the work Chang (2015). The performances of the newly defined estimators are analysed through some numerical results. A real data example is also provided to support the findings.
The Chebyshev or $ell_{infty}$ estimator is an unconventional alternative to the ordinary least squares in solving linear regressions. It is defined as the minimizer of the $ell_{infty}$ objective function begin{align*} hat{boldsymbol{beta}} := arg
We propose a censored quantile regression estimator motivated by unbiased estimating equations. Under the usual conditional independence assumption of the survival time and the censoring time given the covariates, we show that the proposed estimator
We reexamine the classical linear regression model when the model is subject to two types of uncertainty: (i) some of covariates are either missing or completely inaccessible, and (ii) the variance of the measurement error is undetermined and changin
This short note is to point the reader to notice that the proof of high dimensional asymptotic normality of MLE estimator for logistic regression under the regime $p_n=o(n)$ given in paper: Maximum likelihood estimation in logistic regression models
In the last decade, the secondary use of large data from health systems, such as electronic health records, has demonstrated great promise in advancing biomedical discoveries and improving clinical decision making. However, there is an increasing con