ﻻ يوجد ملخص باللغة العربية
Searches for low-surface-brightness galaxies (LSBGs) in galaxy surveys are plagued by the presence of a large number of artifacts (e.g., objects blended in the diffuse light from stars and galaxies, Galactic cirrus, star-forming regions in the arms of spiral galaxies, etc.) that have to be rejected through time consuming visual inspection. In future surveys, which are expected to collect hundreds of petabytes of data and detect billions of objects, such an approach will not be feasible. We investigate the use of convolutional neural networks (CNNs) for the problem of separating LSBGs from artifacts in survey images. We take advantage of the fact that, for the first time, we have available a large number of labeled LSBGs and artifacts from the Dark Energy Survey, that we use to train, validate, and test a CNN model. That model, which we call DeepShadows, achieves a test accuracy of $92.0 %$, a significant improvement relative to feature-based machine learning models. We also study the ability to use transfer learning to adapt this model to classify objects from the deeper Hyper-Suprime-Cam survey, and we show that after the model is retrained on a very small sample from the new survey, it can reach an accuracy of $87.6%$. These results demonstrate that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
The existence of galaxies with a surface brightness $mu$ lower than the night sky has been known since three decades. Yet, their formation mechanism and emergence within a $rmLambda CDM$ universe has remained largely undetermined. For the first time,
We introduce a method for producing a galaxy sample unbiased by surface brightness and stellar mass, by selecting star-forming galaxies via the positions of core-collapse supernovae (CCSNe). Whilst matching $sim$2400 supernovae from the SDSS-II Super
The Rastall gravity is a modification of Einsteins general relativity, in which the energy-momentum conservation is not satisfied and depends on the gradient of the Ricci curvature. It is in dispute whether the Rastall gravity is equivalent to the ge
We present an in-depth study of surface brightness fluctuations (SBFs) in low-luminosity stellar systems. Using the MIST models, we compute theoretical predictions for absolute SBF magnitudes in the LSST, HST ACS/WFC, and proposed Roman Space Telesco
We present a catalog of 23,790 extended low-surface-brightness galaxies (LSBGs) identified in $sim 5000 deg^2$ from the first three years of imaging data from the Dark Energy Survey (DES). Based on a single-component Sersic model fit, we define exten