ﻻ يوجد ملخص باللغة العربية
The Rastall gravity is a modification of Einsteins general relativity, in which the energy-momentum conservation is not satisfied and depends on the gradient of the Ricci curvature. It is in dispute whether the Rastall gravity is equivalent to the general relativity (GR). In this work, we constrain the theory using the rotation curves of Low Surface Brightness (LSB) spiral galaxies. Through fitting the rotation curves of LSB galaxies, we obtain the parameter $beta$ of the Rastall gravity. The $beta$ values of LSB galaxies satisfy Weak Energy Condition (WEC) and Strong Energy Condition(SEC). Combining the $beta$ values of type Ia supernovae and gravitational lensing of elliptical galaxies on the Rastall gravity, we conclude that the Rastall gravity is equivalent to the general relativity.
We present high-resolution rotation curves of a sample of 26 low surface brightness galaxies. From these curves we derive mass distributions using a variety of assumptions for the stellar mass-to-light ratio. We show that the predictions of current C
A recent study has claimed that the rotation curve shapes and mass densities of Low Surface Brightness (LSB) galaxies are largely consistent with $Lambda$CDM predictions, in contrast to a large body of observational work. I demonstrate that the metho
The existence of galaxies with a surface brightness $mu$ lower than the night sky has been known since three decades. Yet, their formation mechanism and emergence within a $rmLambda CDM$ universe has remained largely undetermined. For the first time,
Searches for low-surface-brightness galaxies (LSBGs) in galaxy surveys are plagued by the presence of a large number of artifacts (e.g., objects blended in the diffuse light from stars and galaxies, Galactic cirrus, star-forming regions in the arms o
Dwarf and low surface brightness galaxies are ideal objects to test modified Newtonian dynamics (MOND), because in most of these galaxies the accelerations fall below the threshold below where MOND supposedly applies. We have selected from the litera