ﻻ يوجد ملخص باللغة العربية
The direct $gamma$-decays of the giant dipole resonance (GDR) and the giant quadrupole resonance (GQR) of $^{208}$Pb to low-lying states are investigated by means of a microscopic self-consistent model. The model considers effects beyond the linear response approximation. The strong sensitivity of $gamma$-decay to the isospin of the involved states is proven. By comparing their decay widths, a much larger weight of the $3_{1}^{-}$ component in the GQR wave function of $^{208}$Pb is deduced, with respect to the weight of the $2_{1}^{+}$ component in the GDR wave function. Thus, we have shown that $gamma$-decay is a unique probe of the resonance wave functions, and a testground for nuclear structure models.
The statistical model of compound-nucleus reactions predicts that the fluctuations of the partial $gamma$-decay widths for a compound-nucleus resonance are governed by the Porter-Thomas distribution (PTD), and that consequently the distribution of to
A method of calculating giant resonance strength functions using Time-Dependent Hartree-Fock techniques is described. An application to isoscalar giant monopole resonances in spherical nuclei is made, thus allowing a comparison between independent 1-, 2- and 3-Dimensional computer codes.
We review the phenomenon of fine structure of nuclear giant resonances and its relation to different resonance decay mechanisms. Wavelet analysis of the experimental spectra provides quantitative information on the fine structure in terms of characte
Fine structure of giant resonances (GR) has been established in recent years as a global phenomenon across the nuclear chart and for different types of resonances. A quantitative description of the fine structure in terms of characteristic scales der
Hadronic resonances can play a pivotal role in providing experimental evidence for partial chiral symmetry restoration in the deconfined quark-gluon phase produced at RHIC. Their lifetimes, which are comparable to the lifetime of the partonic plasma