ﻻ يوجد ملخص باللغة العربية
Fine structure of giant resonances (GR) has been established in recent years as a global phenomenon across the nuclear chart and for different types of resonances. A quantitative description of the fine structure in terms of characteristic scales derived by wavelet techniques is discussed. By comparison with microscpic calculations of GR strength distributions one can extract information on the role of different decay mechanisms contributing to the width of GRs. The observed cross-section fluctuations contain information on the level density (LD) of states with a given spin and parity defined by the multipolarity of the GR.
In the canonical formalism of statistical physics, a signature of a first order phase transition for finite systems is the bimodal distribution of an order parameter. Previous thermodynamical studies of nuclear sources produced in heavy-ion collision
A set of high resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the Giant Dipole Resonance (GDR) in sd-shell nuclei. Understanding
We review the phenomenon of fine structure of nuclear giant resonances and its relation to different resonance decay mechanisms. Wavelet analysis of the experimental spectra provides quantitative information on the fine structure in terms of characte
Numerous models for grounded language understanding have been recently proposed, including (i) generic models that can be easily adapted to any given task and (ii) intuitively appealing modular models that require background knowledge to be instantia
This year marks the thirtieth anniversary of the only supernova from which we have detected neutrinos - SN 1987A. The twenty or so neutrinos that were detected were mined to great depth in order to determine the events that occurred in the explosion