ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine structure of giant resonances: What can be learned

77   0   0.0 ( 0 )
 نشر من قبل Peter von Neumann-Cosel
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Fine structure of giant resonances (GR) has been established in recent years as a global phenomenon across the nuclear chart and for different types of resonances. A quantitative description of the fine structure in terms of characteristic scales derived by wavelet techniques is discussed. By comparison with microscpic calculations of GR strength distributions one can extract information on the role of different decay mechanisms contributing to the width of GRs. The observed cross-section fluctuations contain information on the level density (LD) of states with a given spin and parity defined by the multipolarity of the GR.



قيم البحث

اقرأ أيضاً

126 - Eric Bonnet 2007
In the canonical formalism of statistical physics, a signature of a first order phase transition for finite systems is the bimodal distribution of an order parameter. Previous thermodynamical studies of nuclear sources produced in heavy-ion collision s provide information which support the existence of a phase transition in those finite nuclear systems. Some results suggest that the observable Z1 (charge of the biggest fragment) can be considered as a reliable order parameter of the transition. This talk will show how from peripheral collisions studied with the INDRA detector at GSI we can obtain this bimodal behaviour of Z1. Getting rid of the entrance channel effects and under the constraint of an equiprobable distribution of excitation energy (E*), we use the canonical description of a phase transition to link this bimodal behaviour with the residual convexity of the entropy. Theoretical (with and without phase transition) and experimental Z1-E* correlations are compared. This comparison allows us to rule out the case without transition. Moreover that quantitative comparison provides us with information about the coexistence region in the Z1-E* plane which is in good agreement with that obtained with the signal of abnormal uctuations of configurational energy (microcanonical negative heat capacity).
A set of high resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the Giant Dipole Resonance (GDR) in sd-shell nuclei. Understanding is provided by state-of-the-art theoretical Random Phase Approximation (RPA) calculatios for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement supports that the fine structure arises from ground-state deformation driven by alpha clustering.
We review the phenomenon of fine structure of nuclear giant resonances and its relation to different resonance decay mechanisms. Wavelet analysis of the experimental spectra provides quantitative information on the fine structure in terms of characte ristic scales. A comparable analysis of resonance strength distributions from microscopic approaches incorporating one or several of the resonance decay mechanisms allows conclusions on the source of the fine structure. For the isoscalar giant quadrupole resonance (ISGQR), spreading through the first step of the doorway mechanism, i.e. coupling between one particle-one hole ($1p1h$) and two particle-two hole ($2p2h$) states is identified as the relevant mechanism. In heavy nuclei it is dominated by coupling to low-lying surface vibrations, while in lighter nuclei stochastic coupling becomes increasingly important. The fine structure observed for the isovector giant dipole resonance (IVGDR) arises mainly from the fragmentation of the $1p1h$ strength (Landau damping), although some indications for the relevance of the spreading width are also found.
Numerous models for grounded language understanding have been recently proposed, including (i) generic models that can be easily adapted to any given task and (ii) intuitively appealing modular models that require background knowledge to be instantia ted. We compare both types of models in how much they lend themselves to a particular form of systematic generalization. Using a synthetic VQA test, we evaluate which models are capable of reasoning about all possible object pairs after training on only a small subset of them. Our findings show that the generalization of modular models is much more systematic and that it is highly sensitive to the module layout, i.e. to how exactly the modules are connected. We furthermore investigate if modular models that generalize well could be made more end-to-end by learning their layout and parametrization. We find that end-to-end methods from prior work often learn inappropriate layouts or parametrizations that do not facilitate systematic generalization. Our results suggest that, in addition to modularity, systematic generalization in language understanding may require explicit regularizers or priors.
This year marks the thirtieth anniversary of the only supernova from which we have detected neutrinos - SN 1987A. The twenty or so neutrinos that were detected were mined to great depth in order to determine the events that occurred in the explosion and to place limits upon all manner of neutrino properties. Since 1987 the scale and sensitivity of the detectors capable of identifying neutrinos from a Galactic supernova have grown considerably so that current generation detectors are capable of detecting of order ten thousand neutrinos for a supernova at the Galactic Center. Next generation detectors will increase that yield by another order of magnitude. Simultaneous with the growth of neutrino detection capability, our understanding of how massive stars explode and how the neutrino interacts with hot and dense matter has also increased by a tremendous degree. The neutrino signal will contain much information on all manner of physics of interest to a wide community. In this review we describe the expected features of the neutrino signal, the detectors which will detect it, and the signatures one might try to look for in order to get at these physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا