ترغب بنشر مسار تعليمي؟ اضغط هنا

Augmented Lagrangian Adversarial Attacks

144   0   0.0 ( 0 )
 نشر من قبل J\\'er\\^ome Rony
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Adversarial attack algorithms are dominated by penalty methods, which are slow in practice, or more efficient distance-customized methods, which are heavily tailored to the properties of the distance considered. We propose a white-box attack algorithm to generate minimally perturbed adversarial examples based on Augmented Lagrangian principles. We bring several algorithmic modifications, which have a crucial effect on performance. Our attack enjoys the generality of penalty methods and the computational efficiency of distance-customized algorithms, and can be readily used for a wide set of distances. We compare our attack to state-of-the-art methods on three datasets and several models, and consistently obtain competitive performances with similar or lower computational complexity.



قيم البحث

اقرأ أيضاً

There has been an ongoing cycle where stronger defenses against adversarial attacks are subsequently broken by a more advanced defense-aware attack. We present a new approach towards ending this cycle where we deflect adversarial attacks by causing t he attacker to produce an input that semantically resembles the attacks target class. To this end, we first propose a stronger defense based on Capsule Networks that combines three detection mechanisms to achieve state-of-the-art detection performance on both standard and defense-aware attacks. We then show that undetected attacks against our defense often perceptually resemble the adversarial target class by performing a human study where participants are asked to label images produced by the attack. These attack images can no longer be called adversarial because our network classifies them the same way as humans do.
211 - Zifei Zhang , Kai Qiao , Jian Chen 2020
Though deep neural networks perform challenging tasks excellently, they are susceptible to adversarial examples, which mislead classifiers by applying human-imperceptible perturbations on clean inputs. Under the query-free black-box scenario, adversa rial examples are hard to transfer to unknown models, and several methods have been proposed with the low transferability. To settle such issue, we design a max-min framework inspired by input transformations, which are benificial to both the adversarial attack and defense. Explicitly, we decrease loss values with inputs affline transformations as a defense in the minimum procedure, and then increase loss values with the momentum iterative algorithm as an attack in the maximum procedure. To further promote transferability, we determine transformed values with the max-min theory. Extensive experiments on Imagenet demonstrate that our defense-guided transferable attacks achieve impressive increase on transferability. Experimentally, we show that our ASR of adversarial attack reaches to 58.38% on average, which outperforms the state-of-the-art method by 12.1% on the normally trained models and by 11.13% on the adversarially trained models. Additionally, we provide elucidative insights on the improvement of transferability, and our method is expected to be a benchmark for assessing the robustness of deep models.
Despite the recent advances in a wide spectrum of applications, machine learning models, especially deep neural networks, have been shown to be vulnerable to adversarial attacks. Attackers add carefully-crafted perturbations to input, where the pertu rbations are almost imperceptible to humans, but can cause models to make wrong predictions. Techniques to protect models against adversarial input are called adversarial defense methods. Although many approaches have been proposed to study adversarial attacks and defenses in different scenarios, an intriguing and crucial challenge remains that how to really understand model vulnerability? Inspired by the saying that if you know yourself and your enemy, you need not fear the battles, we may tackle the aforementioned challenge after interpreting machine learning models to open the black-boxes. The goal of model interpretation, or interpretable machine learning, is to extract human-understandable terms for the working mechanism of models. Recently, some approaches start incorporating interpretation into the exploration of adversarial attacks and defenses. Meanwhile, we also observe that many existing methods of adversarial attacks and defenses, although not explicitly claimed, can be understood from the perspective of interpretation. In this paper, we review recent work on adversarial attacks and defenses, particularly from the perspective of machine learning interpretation. We categorize interpretation into two types, feature-level interpretation and model-level interpretation. For each type of interpretation, we elaborate on how it could be used for adversarial attacks and defenses. We then briefly illustrate additional correlations between interpretation and adversaries. Finally, we discuss the challenges and future directions along tackling adversary issues with interpretation.
Reliable evaluation of adversarial defenses is a challenging task, currently limited to an expert who manually crafts attacks that exploit the defenses inner workings, or to approaches based on ensemble of fixed attacks, none of which may be effectiv e for the specific defense at hand. Our key observation is that custom attacks are composed from a set of reusable building blocks, such as fine-tuning relevant attack parameters, network transformations, and custom loss functions. Based on this observation, we present an extensible framework that defines a search space over these reusable building blocks and automatically discovers an effective attack on a given model with an unknown defense by searching over suitable combinations of these blocks. We evaluated our framework on 23 adversarial defenses and showed it outperforms AutoAttack, the current state-of-the-art tool for reliable evaluation of adversarial defenses: our discovered attacks are either stronger, producing 3.0%-50.8% additional adversarial examples (10 cases), or are typically 2x faster while enjoying similar adversarial robustness (13 cases).
129 - Tianyu Pang , Kun Xu , Jun Zhu 2019
It has been widely recognized that adversarial examples can be easily crafted to fool deep networks, which mainly root from the locally non-linear behavior nearby input examples. Applying mixup in training provides an effective mechanism to improve g eneralization performance and model robustness against adversarial perturbations, which introduces the globally linear behavior in-between training examples. However, in previous work, the mixup-trained models only passively defend adversarial attacks in inference by directly classifying the inputs, where the induced global linearity is not well exploited. Namely, since the locality of the adversarial perturbations, it would be more efficient to actively break the locality via the globality of the model predictions. Inspired by simple geometric intuition, we develop an inference principle, named mixup inference (MI), for mixup-trained models. MI mixups the input with other random clean samples, which can shrink and transfer the equivalent perturbation if the input is adversarial. Our experiments on CIFAR-10 and CIFAR-100 demonstrate that MI can further improve the adversarial robustness for the models trained by mixup and its variants.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا