ﻻ يوجد ملخص باللغة العربية
While generative adversarial networks (GANs) can successfully produce high-quality images, they can be challenging to control. Simplifying GAN-based image generation is critical for their adoption in graphic design and artistic work. This goal has led to significant interest in methods that can intuitively control the appearance of images generated by GANs. In this paper, we present HistoGAN, a color histogram-based method for controlling GAN-generated images colors. We focus on color histograms as they provide an intuitive way to describe image color while remaining decoupled from domain-specific semantics. Specifically, we introduce an effective modification of the recent StyleGAN architecture to control the colors of GAN-generated images specified by a target color histogram feature. We then describe how to expand HistoGAN to recolor real images. For image recoloring, we jointly train an encoder network along with HistoGAN. The recoloring model, ReHistoGAN, is an unsupervised approach trained to encourage the network to keep the original images content while changing the colors based on the given target histogram. We show that this histogram-based approach offers a better way to control GAN-generated and real images colors while producing more compelling results compared to existing alternative strategies.
With the recent progress in Generative Adversarial Networks (GANs), it is imperative for media and visual forensics to develop detectors which can identify and attribute images to the model generating them. Existing works have shown to attribute imag
Recently, GAN based method has demonstrated strong effectiveness in generating augmentation data for person re-identification (ReID), on account of its ability to bridge the gap between domains and enrich the data variety in feature space. However, m
Last-generation GAN models allow to generate synthetic images which are visually indistinguishable from natural ones, raising the need to develop tools to distinguish fake and natural images thus contributing to preserve the trustworthiness of digita
Fake face detection is a significant challenge for intelligent systems as generative models become more powerful every single day. As the quality of fake faces increases, the trained models become more and more inefficient to detect the novel fake fa
In real-world underwater environment, exploration of seabed resources, underwater archaeology, and underwater fishing rely on a variety of sensors, vision sensor is the most important one due to its high information content, non-intrusive, and passiv