ﻻ يوجد ملخص باللغة العربية
Today, many state-of-the-art automatic speech recognition (ASR) systems apply all-neural models that map audio to word sequences trained end-to-end along one global optimisation criterion in a fully data driven fashion. These models allow high precision ASR for domains and words represented in the training material but have difficulties recognising words that are rarely or not at all represented during training, i.e. trending words and new named entities. In this paper, we use a text-to-speech (TTS) engine to provide synthetic audio for out-of-vocabulary (OOV) words. We aim to boost the recognition accuracy of a recurrent neural network transducer (RNN-T) on OOV words by using the extra audio-text pairs, while maintaining the performance on the non-OOV words. Different regularisation techniques are explored and the best performance is achieved by fine-tuning the RNN-T on both original training data and extra synthetic data with elastic weight consolidation (EWC) applied on the encoder. This yields a 57% relative word error rate (WER) reduction on utterances containing OOV words without any degradation on the whole test set.
End-to-end acoustic speech recognition has quickly gained widespread popularity and shows promising results in many studies. Specifically the joint transformer/CTC model provides very good performance in many tasks. However, under noisy and distorted
In this paper, we present an end-to-end training framework for building state-of-the-art end-to-end speech recognition systems. Our training system utilizes a cluster of Central Processing Units(CPUs) and Graphics Processing Units (GPUs). The entire
We propose a technique to compute spectrograms using Frequency Domain Linear Prediction (FDLP) that uses all-pole models to fit the squared Hilbert envelope of speech in different frequency sub-bands. The spectrogram of a complete speech utterance is
End-to-end (E2E) models have shown to outperform state-of-the-art conventional models for streaming speech recognition [1] across many dimensions, including quality (as measured by word error rate (WER)) and endpointer latency [2]. However, the model
Recently neural architecture search(NAS) has been successfully used in image classification, natural language processing, and automatic speech recognition(ASR) tasks for finding the state-of-the-art(SOTA) architectures than those human-designed archi