ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Conformer-based End-to-End Speech Recognition Using Neural Architecture Search

104   0   0.0 ( 0 )
 نشر من قبل Yukun Liu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently neural architecture search(NAS) has been successfully used in image classification, natural language processing, and automatic speech recognition(ASR) tasks for finding the state-of-the-art(SOTA) architectures than those human-designed architectures. NAS can derive a SOTA and data-specific architecture over validation data from a pre-defined search space with a search algorithm. Inspired by the success of NAS in ASR tasks, we propose a NAS-based ASR framework containing one search space and one differentiable search algorithm called Differentiable Architecture Search(DARTS). Our search space follows the convolution-augmented transformer(Conformer) backbone, which is a more expressive ASR architecture than those used in existing NAS-based ASR frameworks. To improve the performance of our method, a regulation method called Dynamic Search Schedule(DSS) is employed. On a widely used Mandarin benchmark AISHELL-1, our best-searched architecture outperforms the baseline Conform model significantly with about 11% CER relative improvement, and our method is proved to be pretty efficient by the search cost comparisons.



قيم البحث

اقرأ أيضاً

Neural Architecture Search (NAS), the process of automating architecture engineering, is an appealing next step to advancing end-to-end Automatic Speech Recognition (ASR), replacing expert-designed networks with learned, task-specific architectures. In contrast to early computational-demanding NAS methods, recent gradient-based NAS methods, e.g., DARTS (Differentiable ARchiTecture Search), SNAS (Stochastic NAS) and ProxylessNAS, significantly improve the NAS efficiency. In this paper, we make two contributions. First, we rigorously develop an efficient NAS method via Straight-Through (ST) gradients, called ST-NAS. Basically, ST-NAS uses the loss from SNAS but uses ST to back-propagate gradients through discrete variables to optimize the loss, which is not revealed in ProxylessNAS. Using ST gradients to support sub-graph sampling is a core element to achieve efficient NAS beyond DARTS and SNAS. Second, we successfully apply ST-NAS to end-to-end ASR. Experiments over the widely benchmarked 80-hour WSJ and 300-hour Switchboard datasets show that the ST-NAS induced architectures significantly outperform the human-designed architecture across the two datasets. Strengths of ST-NAS such as architecture transferability and low computation cost in memory and time are also reported.
167 - Wei Liu , Tan Lee 2021
Confidence measure is a performance index of particular importance for automatic speech recognition (ASR) systems deployed in real-world scenarios. In the present study, utterance-level neural confidence measure (NCM) in end-to-end automatic speech r ecognition (E2E ASR) is investigated. The E2E system adopts the joint CTC-attention Transformer architecture. The prediction of NCM is formulated as a task of binary classification, i.e., accept/reject the input utterance, based on a set of predictor features acquired during the ASR decoding process. The investigation is focused on evaluating and comparing the efficacies of predictor features that are derived from different internal and external modules of the E2E system. Experiments are carried out on children speech, for which state-of-the-art ASR systems show less than satisfactory performance and robust confidence measure is particularly useful. It is noted that predictor features related to acoustic information of speech play a more important role in estimating confidence measure than those related to linguistic information. N-best score features show significantly better performance than single-best ones. It has also been shown that the metrics of EER and AUC are not appropriate to evaluate the NCM of a mismatched ASR with significant performance gap.
Recently, Transformer has gained success in automatic speech recognition (ASR) field. However, it is challenging to deploy a Transformer-based end-to-end (E2E) model for online speech recognition. In this paper, we propose the Transformer-based onlin e CTC/attention E2E ASR architecture, which contains the chunk self-attention encoder (chunk-SAE) and the monotonic truncated attention (MTA) based self-attention decoder (SAD). Firstly, the chunk-SAE splits the speech into isolated chunks. To reduce the computational cost and improve the performance, we propose the state reuse chunk-SAE. Sencondly, the MTA based SAD truncates the speech features monotonically and performs attention on the truncated features. To support the online recognition, we integrate the state reuse chunk-SAE and the MTA based SAD into online CTC/attention architecture. We evaluate the proposed online models on the HKUST Mandarin ASR benchmark and achieve a 23.66% character error rate (CER) with a 320 ms latency. Our online model yields as little as 0.19% absolute CER degradation compared with the offline baseline, and achieves significant improvement over our prior work on Long Short-Term Memory (LSTM) based online E2E models.
A key desiderata for inclusive and accessible speech recognition technology is ensuring its robust performance to childrens speech. Notably, this includes the rapidly advancing neural network based end-to-end speech recognition systems. Children spee ch recognition is more challenging due to the larger intra-inter speaker variability in terms of acoustic and linguistic characteristics compared to adult speech. Furthermore, the lack of adequate and appropriate children speech resources adds to the challenge of designing robust end-to-end neural architectures. This study provides a critical assessment of automatic children speech recognition through an empirical study of contemporary state-of-the-art end-to-end speech recognition systems. Insights are provided on the aspects of training data requirements, adaptation on children data, and the effect of children age, utterance lengths, different architectures and loss functions for end-to-end systems and role of language models on the speech recognition performance.
Silent speech interfaces (SSI) has been an exciting area of recent interest. In this paper, we present a non-invasive silent speech interface that uses inaudible acoustic signals to capture peoples lip movements when they speak. We exploit the speake r and microphone of the smartphone to emit signals and listen to their reflections, respectively. The extracted phase features of these reflections are fed into the deep learning networks to recognize speech. And we also propose an end-to-end recognition framework, which combines the CNN and attention-based encoder-decoder network. Evaluation results on a limited vocabulary (54 sentences) yield word error rates of 8.4% in speaker-independent and environment-independent settings, and 8.1% for unseen sentence testing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا