ﻻ يوجد ملخص باللغة العربية
Collider bias is a harmful form of sample selection bias that neural networks are ill-equipped to handle. This bias manifests itself when the underlying causal signal is strongly correlated with other confounding signals due to the training data collection procedure. In the situation where the confounding signal is easy-to-learn, deep neural networks will latch onto this and the resulting model will generalise poorly to in-the-wild test scenarios. We argue herein that the cause of failure is a combination of the deep structure of neural networks and the greedy gradient-driven learning process used - one that prefers easy-to-compute signals when available. We show it is possible to mitigate against this by generating bias-decoupled training data using latent adversarial debiasing (LAD), even when the confounding signal is present in 100% of the training data. By training neural networks on these adversarial examples,we can improve their generalisation in collider bias settings. Experiments show state-of-the-art performance of LAD in label-free debiasing with gains of 76.12% on background coloured MNIST, 35.47% on fore-ground coloured MNIST, and 8.27% on corrupted CIFAR-10.
Graph Neural Networks (GNNs) have recently demonstrated superior capability of tackling graph analytical problems in various applications. Nevertheless, with the wide-spreading practice of GNNs in high-stake decision-making processes, there is an inc
The recurrent neural networks (RNN) with richly distributed internal states and flexible non-linear transition functions, have overtaken the dynamic Bayesian networks such as the hidden Markov models (HMMs) in the task of modeling highly structured s
In recent years the ubiquitous deployment of AI has posed great concerns in regards to algorithmic bias, discrimination, and fairness. Compared to traditional forms of bias or discrimination caused by humans, algorithmic bias generated by AI is more
Delusional bias is a fundamental source of error in approximate Q-learning. To date, the only techniques that explicitly address delusion require comprehensive search using tabular value estimates. In this paper, we develop efficient methods to mitig
Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists in training composite architectures in an end-to-end fashion, where in