ﻻ يوجد ملخص باللغة العربية
While phase-change materials (PCMs) composed of chalcogenide have different crystallization mechanisms (CM), such as nucleation-dominated Ge2Sb2Te5 (GST) and growth-dominated GeTe (GT), revealing the essential reason of CM as well as the tuned properties is still a long-standing issue. Here, we remarkably find the distinct stability of Te-terminated (111) boundaries (TTB) in different systems, which provides a path to understand the difference in CM. It stems from the quantum effect of molecular orbital theory: the optimal local chemical composition results in the formation of TTB without dangling bonds (DB) in GST but with DB in GT, where DB destabilizes boundary due to its distorted local environment mismatching Oh symmetry of p orbitals. Moreover, the inner vacancy concentration in GST is alterable and controlled by TTB, manifested by the absence of cubic-to-hexagonal transition in carbon-doped GST of small grains and minimized inner vacancy. Finally, the charge transport property (CTP) is controlled by boundary via changing the density of charge or hole nearby as well as vacancy. These findings open the door to tune CTP by CM, which is necessary for achieving low-power and ultrafast devices.
Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at am
We demonstrate here a controllable variation in the Casimir force. Changes in the force of up to 20% at separations of ~100 nm between Au and AgInSbTe (AIST) surfaces were achieved upon crystallization of an amorphous sample of AIST. This material is
High-speed electrical switching of Ge2Sb2Te5 (GST) remains a challenging task due to the large impedance mismatch between the low-conductivity amorphous state and the high-conductivity crystalline state. In this letter, we demonstrate an effective do
Microparticles including paraffin are currently used for textiles coating in order to deaden thermal shocks. We will show that polymer nanoparticles embedded in those microsized capsules allow for decreasing the thermal conductivity of the coating an
A long-standing question for avant-grade data storage technology concerns the nature of the ultrafast photoinduced phase transformations in the wide class of chalcogenide phase-change materials (PCMs). Overall, a comprehensive understanding of the mi