ترغب بنشر مسار تعليمي؟ اضغط هنا

A Preconditioned Alternating Direction Method of Multipliers for the TV-$L^1$ Optical Flow via Dual Approach

118   0   0.0 ( 0 )
 نشر من قبل Hongpeng Sun Dr.
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This work introduces a preconditioned dual optimization framework with the alternating direction method of multipliers (ADMM) to the optical flow estimates. By introducing efficient preconditioners with the multiscale pyramid, our preconditioned algorithms give competitive optical flow estimates under appropriate variational functional frameworks. We propose a novel preconditioned alternating direction methods of multipliers (ADMM) with convergenceguarantee for the total variation regularized optical flow problem through optimizing the dual problems. The numerical tests show the proposed preconditioned ADMM algorithms are very efficient for the total variation regularized optical flow estimates.



قيم البحث

اقرأ أيضاً

Quantization of the parameters of machine learning models, such as deep neural networks, requires solving constrained optimization problems, where the constraint set is formed by the Cartesian product of many simple discrete sets. For such optimizati on problems, we study the performance of the Alternating Direction Method of Multipliers for Quantization ($texttt{ADMM-Q}$) algorithm, which is a variant of the widely-used ADMM method applied to our discrete optimization problem. We establish the convergence of the iterates of $texttt{ADMM-Q}$ to certain $textit{stationary points}$. To the best of our knowledge, this is the first analysis of an ADMM-type method for problems with discrete variables/constraints. Based on our theoretical insights, we develop a few variants of $texttt{ADMM-Q}$ that can handle inexact update rules, and have improved performance via the use of soft projection and injecting randomness to the algorithm. We empirically evaluate the efficacy of our proposed approaches.
Ptychography has risen as a reference X-ray imaging technique: it achieves resolutions of one billionth of a meter, macroscopic field of view, or the capability to retrieve chemical or magnetic contrast, among other features. A ptychographyic reconst ruction is normally formulated as a blind phase retrieval problem, where both the image (sample) and the probe (illumination) have to be recovered from phaseless measured data. In this article we address a nonlinear least squares model for the blind ptychography problem with constraints on the image and the probe by maximum likelihood estimation of the Poisson noise model. We formulate a variant model that incorporates the information of phaseless measurements of the probe to eliminate possible artifacts. Next, we propose a generalized alternating direction method of multipliers designed for the proposed nonconvex models with convergence guarantee under mild conditions, where their subproblems can be solved by fast element-wise operations. Numerically, the proposed algorithm outperforms state-of-the-art algorithms in both speed and image quality.
146 - Ermin Wei , Asuman Ozdaglar 2013
We consider a network of agents that are cooperatively solving a global optimization problem, where the objective function is the sum of privately known local objective functions of the agents and the decision variables are coupled via linear constra ints. Recent literature focused on special cases of this formulation and studied their distributed solution through either subgradient based methods with O(1/sqrt(k)) rate of convergence (where k is the iteration number) or Alternating Direction Method of Multipliers (ADMM) based methods, which require a synchronous implementation and a globally known order on the agents. In this paper, we present a novel asynchronous ADMM based distributed method for the general formulation and show that it converges at the rate O(1/k).
In this paper, we develop a dual alternating direction method of multipliers (ADMM) for an image decomposition model. In this model, an image is divided into two meaningful components, i.e., a cartoon part and a texture part. The optimization algorit hm that we develop not only gives the cartoon part and the texture part of an image but also gives the restored image (cartoon part + texture part). We also present the global convergence and the local linear convergence rate for the algorithm under some mild conditions. Numerical experiments demonstrate the efficiency and robustness of the dual ADMM (dADMM). Furthermore, we can obtain relatively higher signalto-noise ratio (SNR) comparing to other algorithms. It shows that the choice of the algorithm is also important even for the same model.
The alternating direction method of multipliers (ADMM) is one of the most widely used first-order optimisation methods in the literature owing to its simplicity, flexibility and efficiency. Over the years, numerous efforts are made to improve the per formance of the method, such as the inertial technique. By studying the geometric properties of ADMM, we discuss the limitations of current inertial accelerated ADMM and then present and analyze an adaptive acceleration scheme for the method. Numerical experiments on problems arising from image processing, statistics and machine learning demonstrate the advantages of the proposed acceleration approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا