ﻻ يوجد ملخص باللغة العربية
In this paper, we develop a dual alternating direction method of multipliers (ADMM) for an image decomposition model. In this model, an image is divided into two meaningful components, i.e., a cartoon part and a texture part. The optimization algorithm that we develop not only gives the cartoon part and the texture part of an image but also gives the restored image (cartoon part + texture part). We also present the global convergence and the local linear convergence rate for the algorithm under some mild conditions. Numerical experiments demonstrate the efficiency and robustness of the dual ADMM (dADMM). Furthermore, we can obtain relatively higher signalto-noise ratio (SNR) comparing to other algorithms. It shows that the choice of the algorithm is also important even for the same model.
Quantization of the parameters of machine learning models, such as deep neural networks, requires solving constrained optimization problems, where the constraint set is formed by the Cartesian product of many simple discrete sets. For such optimizati
Since sparse unmixing has emerged as a promising approach to hyperspectral unmixing, some spatial-contextual information in the hyperspectral images has been exploited to improve the performance of the unmixing recently. The total variation (TV) has
The alternating direction method of multipliers (ADMM) is one of the most widely used first-order optimisation methods in the literature owing to its simplicity, flexibility and efficiency. Over the years, numerous efforts are made to improve the per
This work introduces a preconditioned dual optimization framework with the alternating direction method of multipliers (ADMM) to the optical flow estimates. By introducing efficient preconditioners with the multiscale pyramid, our preconditioned algo
Weight pruning methods for deep neural networks (DNNs) have been investigated recently, but prior work in this area is mainly heuristic, iterative pruning, thereby lacking guarantees on the weight reduction ratio and convergence time. To mitigate the