ﻻ يوجد ملخص باللغة العربية
In this paper, we study properties of the coefficients appearing in the $q$-series expansion of $prod_{nge 1}[(1-q^n)/(1-q^{pn})]^delta$, the infinite Borwein product for an arbitrary prime $p$, raised to an arbitrary positive real power $delta$. We use the Hardy--Ramanujan--Rademacher circle method to give an asymptotic formula for the coefficients. For $p=3$ we give an estimate of their growth which enables us to partially confirm an earlier conjecture of the first author concerning an observed sign pattern of the coefficients when the exponent $delta$ is within a specified range of positive real numbers. We further establish some vanishing and divisibility properties of the coefficients of the cube of the infinite Borwein product. We conclude with an Appendix presenting several new conjectures on precise sign patterns of infinite products raised to a real power which are similar to the conjecture we made in the $p=3$ case.
We denote by $c_t^{(m)}(n)$ the coefficient of $q^n$ in the series expansion of $(q;q)_infty^m(q^t;q^t)_infty^{-m}$, which is the $m$-th power of the infinite Borwein product. Let $t$ and $m$ be positive integers with $m(t-1)leq 24$. We provide asymp
We consider some of Jonathan and Peter Borweins contributions to the high-precision computation of $pi$ and the elementary functions, with particular reference to their book Pi and the AGM (Wiley, 1987). Here AGM is the arithmetic-geometric mean of G
The Choix de Bruxelles operation replaces a positive integer n by any of the numbers that can be obtained by halving or doubling a substring of the decimal representation of n. For example, 16 can become any of 16, 26, 13, 112, 8, or 32. We investiga
Let $pi$ be a genuine cuspidal representation of the metaplectic group of rank $n$. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension $2n+1$. We show a case of regularised Rallis inner product formula th
We prove an isomorphism between the finite domain from 1 up to the product of the first n primes and the new defined set of prime modular numbers. This definition provides some insights about relative prime numbers. We provide an inverse function fro