ﻻ يوجد ملخص باللغة العربية
Intrinsic image decomposition is the classical task of mapping image to albedo. The WHDR dataset allows methods to be evaluated by comparing predictions to human judgements (lighter, same as, darker). The best modern intrinsic image methods learn a map from image to albedo using rendered models and human judgements. This is convenient for practical methods, but cannot explain how a visual agent without geometric, surface and illumination models and a renderer could learn to recover intrinsic images. This paper describes a method that learns intrinsic image decomposition without seeing WHDR annotations, rendered data, or ground truth data. The method relies on paradigms - fake albedos and fake shading fields - together with a novel smoothing procedure that ensures good behavior at short scales on real images. Long scale error is controlled by averaging. Our method achieves WHDR scores competitive with those of strong recent methods allowed to see training WHDR annotations, rendered data, and ground truth data. Because our method is unsupervised, we can compute estimates of the test/train variance of WHDR scores; these are quite large, and it is unsafe to rely small differences in reported WHDR.
Intrinsic image decomposition, which is an essential task in computer vision, aims to infer the reflectance and shading of the scene. It is challenging since it needs to separate one image into two components. To tackle this, conventional methods int
Single-view intrinsic image decomposition is a highly ill-posed problem, and so a promising approach is to learn from large amounts of data. However, it is difficult to collect ground truth training data at scale for intrinsic images. In this paper,
Intrinsic image decomposition is a challenging, long-standing computer vision problem for which ground truth data is very difficult to acquire. We explore the use of synthetic data for training CNN-based intrinsic image decomposition models, then app
We propose DeRenderNet, a deep neural network to decompose the albedo and latent lighting, and render shape-(in)dependent shadings, given a single image of an outdoor urban scene, trained in a self-supervised manner. To achieve this goal, we propose
We present and study a novel task named Blind Image Decomposition (BID), which requires separating a superimposed image into constituent underlying images in a blind setting, that is, both the source components involved in mixing as well as the mixin