ﻻ يوجد ملخص باللغة العربية
Intrinsic image decomposition, which is an essential task in computer vision, aims to infer the reflectance and shading of the scene. It is challenging since it needs to separate one image into two components. To tackle this, conventional methods introduce various priors to constrain the solution, yet with limited performance. Meanwhile, the problem is typically solved by supervised learning methods, which is actually not an ideal solution since obtaining ground truth reflectance and shading for massive general natural scenes is challenging and even impossible. In this paper, we propose a novel unsupervised intrinsic image decomposition framework, which relies on neither labeled training data nor hand-crafted priors. Instead, it directly learns the latent feature of reflectance and shading from unsupervised and uncorrelated data. To enable this, we explore the independence between reflectance and shading, the domain invariant content constraint and the physical constraint. Extensive experiments on both synthetic and real image datasets demonstrate consistently superior performance of the proposed method.
Single-view intrinsic image decomposition is a highly ill-posed problem, and so a promising approach is to learn from large amounts of data. However, it is difficult to collect ground truth training data at scale for intrinsic images. In this paper,
Intrinsic image decomposition is the classical task of mapping image to albedo. The WHDR dataset allows methods to be evaluated by comparing predictions to human judgements (lighter, same as, darker). The best modern intrinsic image methods learn a m
Novel view synthesis from a single image aims at generating novel views from a single input image of an object. Several works recently achieved remarkable results, though require some form of multi-view supervision at training time, therefore limitin
Deep image generation is becoming a tool to enhance artists and designers creativity potential. In this paper, we aim at making the generation process more structured and easier to interact with. Inspired by vector graphics systems, we propose a new
We present a method that tackles the challenge of predicting color and depth behind the visible content of an image. Our approach aims at building up a Layered Depth Image (LDI) from a single RGB input, which is an efficient representation that arran