ﻻ يوجد ملخص باللغة العربية
Neutron scattering is a powerful tool to study magnetic structures and dynamics, benefiting from a precisely established theoretical framework. The neutron dipole moment interacts with electrons in materials via their magnetic field, which can have spin and orbital origins. Yet in most experimentally studied cases the individual degrees of freedom are well described within the dipole approximation, sometimes accompanied by further terms of a multipolar expansion that usually act as minor corrections to the dipole form factor. Here we report a unique example of neutrons diffracted mainly by magnetic octupoles. This unusual situation arises in a quantum spin ice where the electronic wavefunction becomes essentially octupolar under the effect of correlations. The discovery of such a new type of quantum spin liquid that comes with a specific experimental signature in neutron scattering is remarkable, because these topical states of matter are notoriously difficult to detect.
Spin liquids are highly correlated yet disordered states formed by the entanglement of magnetic dipoles$^1$. Theories typically define such states using gauge fields and deconfined quasiparticle excitations that emerge from a simple rule governing th
Rare earth (R) half-Heusler compounds, RBiPt, exhibit a wide spectrum of novel ground states. Recently, GdBiPt has been proposed as a potential antiferromagnetic topological insulator (AFTI). We have employed x-ray resonant magnetic scattering to elu
We have performed elastic and inelastic neutron experiments on single crystal samples of the coordination polymer compound CuF2(H2O)2(pyz) (pyz=pyrazine) to study the magnetic structure and excitations. The elastic neutron diffraction measurements in
Resonant magnetic x-ray scattering has been used to investigate the magnetic structure of the magnetoelectric multiferroic DyMn2O5. We have studied the magnetic structure in the ferroelectric phase of this material, which displays the strongest ferro
Motivated by recent synthesis of the hyper-honeycomb material $beta$-$mathrm{Li_2 Ir O_3}$, we study the dynamical structure factor (DSF) of the corresponding 3D Kitaev quantum spin-liquid (QSL), whose fractionalised degrees of freedom are Majorana f