ﻻ يوجد ملخص باللغة العربية
Motivated by recent synthesis of the hyper-honeycomb material $beta$-$mathrm{Li_2 Ir O_3}$, we study the dynamical structure factor (DSF) of the corresponding 3D Kitaev quantum spin-liquid (QSL), whose fractionalised degrees of freedom are Majorana fermions and emergent flux-loops. Properties of this 3D model are known to differ in important ways from those of its 2D counterpart -- it has finite-temperature phase transition, as well as distinct features in Raman response. We show, however, that the qualitative behaviour of the DSF is broadly dimension-independent. Characteristics of the 3D DSF include a response gap even in the gapless QSL phase and an energy dependence deriving from the Majorana fermion density of states. Since the majority of the response is from states containing a single Majorana excitation, our results suggest inelastic neutron scattering as the spectroscopy of choice to illuminate the physics of Majorana fermions in Kitaev QSLs.
Motivated by recent experiments on $alpha$-RuCl$_3$, we investigate a possible quantum spin liquid ground state of the honeycomb-lattice spin model with bond-dependent interactions. We consider the $K-Gamma$ model, where $K$ and $Gamma$ represent the
Quantum spin ice is an appealing proposal of a quantum spin liquid - systems where the magnetic moments of the constituent electron spins evade classical long-range order to form an exotic state that is quantum entangled and coherent over macroscopic
We investigate the generic features of the low energy dynamical spin structure factor of the Kitaev honeycomb quantum spin liquid perturbed away from its exact soluble limit by generic symmetry-allowed exchange couplings. We find that the spin gap pe
An osmium chloride with the chemical formula of OsxCl3 (x = 0.81) was synthesized and its crystal structure and thermodynamic properties were investigated. OsxCl3 crystallizes in a layered CdCl2-type structure with the triangular lattice partially oc
Recent proposals for spin-1 Kitaev materials, such as honeycomb Ni oxides with heavy elements of Bi and Sb, have shown that these compounds naturally give rise to antiferromagnetic (AFM) Kitaev couplings. Conceptual interest in such AFM Kitaev system