ﻻ يوجد ملخص باللغة العربية
Magnetic nanoparticles (MNPs) have been extensively used as tiny heating sources in magnetic hyperthermia therapy, contrast agents in magnetic resonance imaging (MRI), tracers in magnetic particle imaging (MPI), carriers for drug/gene delivery, etc. There have emerged many magnetic nanoparticle/microbeads suppliers since the last decade, such as Ocean NanoTech, Nanoprobes, US Research Nanomaterials, Miltenyi Biotec, micromod Partikeltechnologie GmbH, and nanoComposix, etc. In this paper, we report the physical and magnetic characterizations on iron oxide nanoparticle products from Ocean NanoTech. Standard characterization tools such as Vibrating-Sample Magnetometer (VSM), X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), and Zeta Potential Analyzer are used to provide magnetic nanoparticle customers and researchers with an overview of these iron oxide nanoparticle products. In addition, the dynamic magnetic responses of these iron oxide nanoparticles in aqueous solutions are investigated under low and high frequency alternating magnetic fields, giving a standardized operating procedure for characterizing the MNPs from Ocean NanoTech, thereby yielding the best of magnetic nanoparticles for different applications.
We report about a combined structural and magnetometric characterization of self-assembled magnetic nanoparticle arrays. Monodisperse iron oxide nanoparticles with a diameter of 20 nm were synthesized by thermal decomposition. The nanoparticle suspen
We report on the fabrication and measurements of platinum-self-aligned nanogap devices containing cubed iron (core)/iron oxide (shell) nanoparticles (NPs) with two average different sizes (13 and 17 nm). The nanoparticles are deposited by means of a
We report the structural, transport, electronic, and magnetic properties of Co$_2$FeGa Heusler alloy nanoparticles. The Rietveld refinements of x-ray diffraction (XRD) data with the space group Fm$bar {3}$m clearly demonstrates that the nanoparticles
In order to better understand the transition from quantum to classical behavior in spin system, electron magnetic resonance (EMR) is studied in suspensions of superparamagnetic magnetite nanoparticles with an average diameter of ~ 9 nm and analyzed i
We investigated the structural and magnetic properties of bare SrRuO$_3$ (SRO) ultra-thin films and SrRuO$_3$/SrIrO$_3$/SrZrO$_3$ (SRO/SIO/SZO: RIZ) trilayer heterostructures between 10 K and 80 K, by comparing macroscopic data using magneto-optical