ترغب بنشر مسار تعليمي؟ اضغط هنا

Exponentiation and Fourier transform of tensor modules of $mathfrak{sl} (n+1)$

172   0   0.0 ( 0 )
 نشر من قبل Dimitar Grantcharov
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

With the aid of the exponentiation functor and Fourier transform we introduce a class of modules $T(g,V,S)$ of $mathfrak{sl} (n+1)$ of mixed tensor type. By varying the polynomial $g$, the $mathfrak{gl}(n)$-module $V$, and the set $S$, we obtain important classes of weight modules over the Cartan subalgebra $mathfrak h$ of $mathfrak{sl} (n+1)$, and modules that are free over $mathfrak h$. Furthermore, these modules are obtained through explicit presentation of the elements of $mathfrak{sl} (n+1)$ in terms of differential operators and lead to new tensor coherent families of $mathfrak{sl} (n+1)$. An isomorphism theorem and simplicity criterion for $T(g,V,S)$ is provided.



قيم البحث

اقرأ أيضاً

We use analogues of Enrights and Arkhipovs functors to determine the quiver and relations for a category of $mathfrak{sl}_2 ltimes L(4)$-modules which are locally finite (and with finite multiplicities) over $mathfrak{sl}_2$. We also outline serious obstacles to extend our result to $mathfrak{sl}_2 ltimes L(k)$, for $k>4$.
Let $n>1$ be an integer, $alphain{mathbb C}^n$, $bin{mathbb C}$, and $V$ a $mathfrak{gl}_n$-module. We define a class of weight modules $F^alpha_{b}(V)$ over $sl_{n+1}$ using the restriction of modules of tensor fields over the Lie algebra of vector fields on $n$-dimensional torus. In this paper we consider the case $n=2$ and prove the irreducibility of such 5-parameter $mathfrak{sl}_{3}$-modules $F^alpha_{b}(V)$ generically. All such modules have infinite dimensional weight spaces and lie outside of the category of Gelfand-Tsetlin modules. Hence, this construction yields new families of irreducible $mathfrak{sl}_{3}$-modules.
We classify the simple bounded weight modules of ${mathfrak{sl}(infty})$, ${mathfrak{o}(infty)}$ and ${mathfrak{sp}(infty)}$, and compute their annihilators in $U({mathfrak{sl}(infty}))$, $U({mathfrak{o}(infty))}$, $U({mathfrak{sp}(infty))}$, respectively.
For an irreducible module $P$ over the Weyl algebra $mathcal{K}_n^+$ (resp. $mathcal{K}_n$) and an irreducible module $M$ over the general liner Lie algebra $mathfrak{gl}_n$, using Shens monomorphism, we make $Potimes M$ into a module over the Witt a lgebra $W_n^+$ (resp. over $W_n$). We obtain the necessary and sufficient conditions for $Potimes M$ to be an irreducible module over $W_n^+$ (resp. $W_n$), and determine all submodules of $Potimes M$ when it is reducible. Thus we have constructed a large family of irreducible weight modules with many different weight supports and many irreducible non-weight modules over $W_n^+$ and $W_n$.
Let $V$ be the two-dimensional simple module and $M$ be a projective Verma module for the quantum group of $mathfrak{sl}_2$ at generic $q$. We show that for any $rge 1$, the endomorphism algebra of $Motimes V^{otimes r}$ is isomorphic to the type $B$ Temperley-Lieb algebra $rm{TLB}_r(q, Q)$ for an appropriate parameter $Q$ depending on $M$. The parameter $Q$ is determined explicitly. We also use the cellular structure to determine precisely for which values of $r$ the endomorphism algebra is semisimple. A key element of our method is to identify the algebras $rm{TLB}_r(q,Q)$ as the endomorphism algebras of the objects in a quotient category of the category of coloured ribbon graphs of Freyd-Yetter or the tangle diagrams of Turaev and Reshitikhin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا